БИОЛОГИЧЕСКАЯ РОЛЬ ГИДРОЛИЗА В ПРОЦЕССАХ ЖИЗНЕДЕЯТЕЛЬНОСТИ ОРГАНИЗМА - Студенческий научный форум

XIII Международная студенческая научная конференция Студенческий научный форум - 2021

БИОЛОГИЧЕСКАЯ РОЛЬ ГИДРОЛИЗА В ПРОЦЕССАХ ЖИЗНЕДЕЯТЕЛЬНОСТИ ОРГАНИЗМА

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Гидролиз (греч. hydor «вода» + lysis «разложение») — сольволиз водой. Это химическая реакция взаимодействия вещества с водой, при которой происходит разложение этого вещества и воды с образованием новых соединений. [4] Разложение веществ протекает по схеме:

AB + H-OH → AH + BOH

Гидролиз происходит в присутствии катализатора. Реакции гидролиза подвергаются самые различные вещества. При пищеварении ферменты катализируют гидролиз углеводов, белков и жиров, и образуются молекулы, которые легко усваиваются организмом. Живые организмы осуществляют гидролиз различных органических веществ в ходе реакций катаболизма при участии ферментов. В ходе гидролиза при участии пищеварительных ферментов белки расщепляются на аминокислоты, жиры — на глицерин и жирные кислоты, полисахариды (крахмал и целлюлоза) — на моносахариды (на глюкозу), нуклеиновые кислоты — на свободные нуклеотиды. Гидролизу подвержены химические соединения различных классов (соли, углеводы, белки, эфиры, жиры и др.). Гидролиз важен для процессов, происходящих в живых организмах, например, регулирования концентрации водородных ионов, ферментативного гидролиза макромолекул.

Рассмотрим основные реакции гидролиза, протекающие в организме.

Гидролиз белков

Белковые вещества составляют огромный класс органических, то есть углеродистых, а именно углеродисто азотистых соединений, встречаемых в каждом организме. Без белков или их составных частей – аминокислот – не может быть обеспечено воспроизводство основных структурных элементов органов и тканей, а также образование ряда важнейших веществ (например, ферментов и гормонов). Белки пищи прежде, чем быть использованы для построения тканей тела, предварительно расщепляются. Организмом используется для питания не сам пищевой белок, а его структурные элементы – аминокислоты и, может быть, частично простейшие пептиды, из которых затем в клетках синтезируются специфические для данного вида организма белковые вещества.

Каждый вид организма, каждый орган и каждая ткань содержат свои характерные белки, и при усвоении чужеродных белков пищи организм прежде всего лишает их видовой специфичности. Перед тем, как быть усвоенными белки должны быть разложены на индифферентный материал. Разложение белковых веществ на более простые, способные всасываться в кровь через стенки кишечника, осуществляется в пищеварительных органов человека и животных путем последовательного гидролиза под действием ряда ферментов. В полости рта белки никаким изменениям не подвергаются, так как в состав слюны необходимые для этого протеолитические ферменты не входят. Переваривание белков начинается в желудке.

В желудочно-кишечном тракте пищевые белки распадаются на аминокислоты при участи пищеварительных протеолитических ферментов – пептидогидролаз. Эта группа ферментов различающихся по субстратной специфичности: каждый из этих ферментов предпочтительно (т.е. с наибольшей скоростью) гидролизует пептидные связи (рис.1), образованные определёнными аминокислотами.

В результате совместного действия всех пищеварительных пептидогидролаз белки пищи полностью распадаются на аминокислоты. Таким путём организм получает мономеры для синтеза собственных белков.

Переваривание белков завершается в верхнем отделе тонкого кишечника под действием ферментов поджелудочной железы и клеток кишечника. После каталитического образования в проферментах активного центра и отщепления части молекул, эти белки превращаются соответственно в ферменты: Трипсин, Химотрипсин, Карбопептидазы А и В и Эластазу.

Трипсин, Химотрипсин и Эластаза – эндопептидазы – гидролизуют связи, лежащие ближе к середине полипептидной цепи. Продуктами их действия являются, в основном, пептиды, но образуется и ряд аминокислот.

Карбопептидазы – экзопептидазы. Они гидролизуют пептидную связь, образованную концевым аминокислотным остатком. Карбопептидаза А отщепляет преимущественно концевые аминокислоты с гидрофобным радикалом, а карбоксипептидаза В – остатки лизина и аргинина.

Последний этап переваривания происходит при участии ферментов, синтезируемых клетками кишечника – аминопептидаз и дипептидаз. Первые отщепляют концевые аминокислоты от пептидов, вторые гидролизуют дипептиды.

Таким образом, переваривание пищевых белков – суть, последовательность реакций гидролиза, катализирующегося рядом ферментов.


Гидролиз  углеводов

Углеводы  пищи в пищеварительном тракте распадаются  на мономеры при действии гликозид – ферментов, катализирующих гидролиз гликозидных связей (рис.2) в полисахаридах. 

Переваривание начинается уже в ротовой полости: в слюне содержится фермент амилаза (α~1,4 – гликозидаза), расщепляющая α~1,4 гликозидные связи. Поскольку пища в ротовой полости пребывает недолго, то крахмал здесь переваривается лишь частично. Основным же местом переваривания крахмала служит тонкий кишечник, куда поступает амилаза в составе сока поджелудочной железы. Амилаза не гидролизует гликозидную связь в дисахаридах, поэтому основным продуктом действия кишечной амилазы является дисахарид мальтоза.

Из тех глюкозных остатков, которые в молекуле крахмала соединены 1,6-гликозидной связью, образуется дисахарид изомальтоза. Кроме того, с пищей в организм поступают дисахариды сахароза и лактоза (рис.3),

которые гидролизуются специфическими гликозидазами – мальтозой, изомальтозой (рис.4), лактозой и сахарозой соответственно.

 

Продукты полного гидролиза углеводов – глюкоза, галактоза и фруктоза – через клетки кишечника поступают в кровь.

По числу входящих в их молекулы структурных единиц (остатков простейших углеводов) и способности к гидролизу углеводы подразделяют на моносахариды, олигосахариды и полисахариды. Моносахариды не гидролизуются с образованием более простых углеводов. Олиго - и полисахариды расщепляются при гидролизе до моносахаридов. Продукты полного гидролиза углеводов – глюкоза, галактоза и фруктоза – через клетки кишечника поступают в кровь. Для человека наиболее важны глюкоза, фруктоза, галактоза, рибоза, дезоксирибоза.

Гидролиз жиров

В двенадцатиперстную кишку поступает желчь и сок поджелудочной железы, необходимые для переваривания жиров. В соке поджелудочной железы содержится фермент липаза, катализирующий гидролиз сложноэфирной связи в триацилглицеринах. Поскольку жиры нерастворимы в водных средах, а липаза нерастворима в жирах, гидролиз происходит лишь на поверхности раздела этих фаз и, следовательно, скорость переваривания зависит от площади этой поверхности.

Под действием липазы идёт гидролиз жиров, в ходе которого жирные кислоты отщепляются от триацилглицерина одна за другой, сначала от α-углеродных атомов, потом – от β-углеродного атома (рис. 6)

Образующиеся в процессе переваривания пищи вещества-мономеры, вступают в ряд реакций. Во многих из них они окисляются, и энергия, выделяющаяся при этом окислении, используется для синтеза АТФ из АДФ – основного процесса аккумулирования энергии в живых организмах. Эта энергия необходима для роста и нормального функционирования организма.

Гидролиз одних фосфатов приводит к высвобождению несколько большей энергии, чем гидролиз АТФ, других – меньшей.

 

Вывод

Рассмотренные примеры доказывают огромную роль гидролиза в процессах жизнедеятельности организма. На нём основываются процессы питания и выделения, поддержания гомеостаза (постоянства среды) и перераспределения энергии. Без этого процесса не было бы возможным усвоение пищевых продуктов, так как высасываться в кишечнике способны только относительно небольшие молекулы. Образующиеся в процессе переваривания пищи вещества-мономеры, вступают в ряд реакций. Во многих из них они окисляются, и энергия, выделяющаяся при этом окислении, используется для синтеза АТФ из АДФ – основного процесса аккумулирования энергии в живых организмах. Эта энергия необходима для роста и нормального функционирования организма. Человек получает её как за счёт многостадийного процесса окисления пищи – белков, жиров и углеводов, так и за счёт гидролиза некоторых сложных эфиров, амидов, пептидов и гликозидов. Гидролиз – также основа синтеза мочевины. 

Список литературы

https://www.bestreferat.ru

https: //ru.wikipedia.org/wiki/

Бирюков,  В.В. Основы промышленной биотехнологии. / В.В. Бирюков. –  М:  Колосс, - 2007г.  

Страйер, Л.М. Биохимия / Л.М. Страйер - М.,  -2011г.

Шевницына, Л.В. Неорганическая химия - Учебное пособие. / Т.Б.Белова, - 2007г. 

Просмотров работы: 4898