КАТАЛИЗ И ЕГО ЗНАЧЕНИЕ В ОТРАСЛЯХ НАРОДНОГО ХОЗЯЙСТВА - Студенческий научный форум

XII Международная студенческая научная конференция Студенческий научный форум - 2020

КАТАЛИЗ И ЕГО ЗНАЧЕНИЕ В ОТРАСЛЯХ НАРОДНОГО ХОЗЯЙСТВА

Неретин Н.Ю. 1, Хрисониди В.А. 1
1ФГБОУ ВО "Кубанский государственный технологический университет"
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Явление катализа очень распространена в природе (большинство процессов, происходящих в живых организмах, являются каталитическими) и широко используется в технике (в нефтепереработке и нефтехимии, в производстве серной кислоты, аммиака, азотной кислоты и др.: большая часть всех промышленных реакций — каталитические).

Примером гомогенного катализа является разложение пероксида водорода в присутствии ионов йода. Реакция протекает в две стадии:

H2О2 + I → H2О + IO

H2О2 + IO → H2О + О2 + I

При гомогенном катализе действие катализатора связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, это приводит к снижению энергии активации.

При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела — катализатора, поэтому активность катализаторазависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель.

Механизм гетерогенного катализа сложнее, чем у гомогенного. Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.

Диффузия реагирующих веществ к поверхности твердого вещества;

Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем их хемосорбция;

Химическая реакция между реагирующими молекулами;

Десорбция продуктов с поверхности катализатора;

Диффузия продукта с поверхности катализатора в общий поток.

Примером гетерогенного катализа является окисление SO2 в SO3 на катализаторе V2O5 при производстве серной кислоты (контактный метод).

Течение реакции именно на поверхности катализатора можно продемонстрировать на опыте, в котором пластинку из платины нагревают в пламени газовой горелки, затем пламя тушат и пускают на пластинку струю газа из горелки, при этом пластинка снова раскаляется докрасна — окисление метана происходит на поверхности металла.

Катализ можно определить как ускорение химических реакций под воз-действием веществ-катализаторов, которые вступают в промежуточное химическое взаимодействие с реагирующими веществами, но не входят в состав продуктов и регенерируются после каждого цикла промежуточных взаимодействий. Применение катализаторов позволяет увеличивать скорость химических реакций от неизмеримо малых величин до чрезвычайно больших и, что еще более важно, направлять химические реакции в сторону образования требуемого, желаемого продукта из ряда возможных. Катализ может быть использован для ускорения всех термодинамически возможных химических превращений. Важно отметить, что применение катализаторов позволяет ускорять химические превращения без расхода энергии и без расходования самого катализатора. В действительности некоторый расход катализаторов имеет место, но в результате побочных процессов - механического разрушения, рекристаллизации, воздействия примесей в реакционной смеси и т. п. Само каталитическое действие не требует расхода катализатора. Все это и объясняет чрезвычайно широкое и быстро растущее использование катализа в промышленности.

Катализаторами химических реакций в неживой природе могут быть самые различные вещества. Это и нами экзотический родий, который используется для изготовления зеркал супермощных лазеров и обычный оксид марганца, применяемый для получения кислорода даже в школьной лаборатории.

Кроме того, неорганические катализаторы могут ускорять реакции с разными веществами. Например, родий не только эффективно разлагает муравьиную кислоту, но и борется с выбросами вредных оксидов азота в автомобильных катализаторах.

Другое дело – биологические, а значит, органические катализаторы.
Многочисленные исследования прошлого нашей планеты говорят о том, что на начальном этапе зарождения жизни каталитической способностью обладали некоторые молекулы рибонуклеиновых кислот.

Термин фермент (от латинского fermentum – «брожение», «закваска») был предложен в XVII веке химиком ван Гельмонтом при обсуждении механизмов пищеварения.

Абсолютно все процессы в живом организме прямо или косвенно осуществляются с участием ферментов или энзимов, как их ещё называют. Это и фиксация углерода в процессе фотосинтеза, и расщепление питательных веществ в пищеварительном тракте, и синтез источника энергии для всех живых организмов – АТФ, и многое – многое другое.

По химической природе биологические катализаторы относятся к белкам. Они могут быть как простыми, состоящими только из аминокислот, так и сложными, включающими белок и небелковую часть – простетическую группу. Простетическая группа фермента называется кофермент, а белковая часть – апофермент.

В роли коферментов выступают органические и неорганические вещества. Среди органических это могут быть витамины, например, аскорбиновая кислота. А из неорганических – ионы различных металлов. Например, ионы меди, железа, магния.

Ферменты ускоряют химические реакции за счёт тесного взаимодействия с молекулами исходных реагирующих веществ – так называемых субстратов. Зачастую размеры молекул субстратов значительно меньше размеров молекул самих ферментов, хотя, казалось бы, должно быть наоборот. Поэтому с субстратом или субстратами, потому что их может быть несколько, взаимодействует не вся молекула фермента, а лишь небольшой её участок – активный центр фермента. Построен он чаще всего из нескольких аминокислотных остатков, которые образуют его уникальную структуру. Дело в том, что форма и химическое строение активного центра таковы, что с ним могут связываться только те субстраты, структура которых подходит к структуре активного центра.

В середине XIX века немецкий химик Эмиль Фишер предложил модель «ключ-замок». То есть, субстрат по своему строению подходит к активному центру, как ключ к замку с образованием короткоживущего фермент-субстратного комплекса. Что приводит к облегчённому их разрыву и в конечном итоге к ускорению химической реакции. После этого фермент-субстратный комплекс распадается на конечные продукты и свободный фермент, а активный центр последнего тут же готов принимать новые молекулы субстрата. Получаем такой же итог, как и в случае работы обычных химических катализаторов – скорость реакции увеличивается, а сам катализатор при этом не расходуется и может использоваться многократно.

Но в самом механизме работы органических и неорганических катализаторов есть кардинальное отличие. Каждый фермент действует только на определённый тип связи и ускоряет только одну определённую реакцию. То есть обладает специфичностью. Как вы поняли, специфичность объясняется соответствием активного центра только определённым субстратам. Поэтому, например, фермент мальтаза, разлагающий дисахарид мальтозу до двух молекул глюкозы оказывается не способным разрушать молекулы сахарозы. Несмотря на то, что сахароза также является дисахаридом [1].

Именно благодаря специфичности, биологические катализаторы работают на несколько порядков быстрее, по сравнению со своими неорганическими коллегами. Они ускоряют химические реакции в миллионы и миллиарды раз. Против ускорения в сотни и тысячи раз для обычных катализаторов. Например, одна молекула каталазы за одну секунду способна расщепить 44000 молекул перекиси водорода. Причём, делает она это при нормальном давлении и умеренной температуре.

Но за высокую скорость работы всегда нужно чем-то расплачиваться. Белковая природа ферментов накладывает на них жёсткие ограничения. Как вы помните, структуры белковых молекул могут существовать только при определённых условиях с минимальными от них отклонениями. А так как модель «ключ-замок» основана именно на соответствии структур субстрата и активного центра фермента, то малейшее нарушение строения биологического катализатора приводит к невозможности его связывания с субстратом. Ферменты могут выполнять свои функции только при определённой температуре, определённом диапазоне рН и других факторов. Например, ферменты слюны амилаза и мальтаза разрушают углеводы пищи в слабощелочной среде, а пепсин желудка расщепляет белки уже в кислой. Если повышение температуры ускоряет скорость протекания реакций с неорганическими катализаторами, то ферментативные реакции при значительном повышении температуры замедляются и прекращаются. Именно поэтому температура нашего тела выше 40 градусов оказывается несовместима с жизнью.

Скорость работы ферментов зависит не только от температуры. Некоторые биологические катализаторы, кроме активного центра, имеют и несколько регуляторных центров. С ними также могут связываться определённые вещества и оказывать влияние на активность фермента. Все их можно разделить на две группы. Активаторы – вещества, повышающие скорость ферментативных реакций. И ингибиторы – вещества, снижающие или блокирующие активность ферментов.

Активирующее влияние на скорость ферментативной реакции оказывают разнообразные вещества органической и неорганической природы. Например, в желудке человека соляная кислота активирует фермент пепсин. Максимальная активность которого лежит в пределах рН от полутора до двух.
Ингибирование ферментов может быть обратимым и необратимым. Если вещество-ингибитор вызывает стойкое изменение пространственной структуры фермента, то такое ингибирование будет необратимым.
А вот обратимое ингибирование, в свою очередь, бывает двух типов. Давайте их рассмотрим.

С активным центром фермента могут связываться вещества, сходные по структуре с субстратом. Никакой реакции при этом нет, но между ингибиторами и субстратом происходит конкуренция за активный центр. Поэтому такой тип ингибирования называется конкурентным.

Конкурентное ингибирование широко используется в медицине. Антибиотики, противоопухолевые препараты, используемые в качестве лекарственных средств, являются конкурентными ингибиторами.

В неконкурентном ингибировании не участвуют вещества, сходные с субстратом. При таком типе ингибирования, молекулы ингибиторов присоединяются к регуляторному центру фермента. Это вызывает изменение пространственной структуры активного центра, что препятствует присоединению к нему молекул субстрата. Тем самым снижается скорость ферментативной реакции [2].

Уникальные способности ферментов уже много лет используются человеком в хозяйственной деятельности. В настоящее время развивается новая отрасль науки – промышленная энзимология, которая, в свою очередь, является основой биотехнологии.

Список литературы:

Транспортировка и хранение скоропортящихся пищевых продуктов. Данилин В.Н., Петрашев В.А., Боровская Л.В. Известия высших учебных заведений. Пищевая технология. 1996. № 1-2 (230-231). С. 74.

Исследование состава примесей пентозных гидролизатов. Хрисониди В.А. Мир науки и инноваций. 2015. Т. 14. С. 5-9.

Просмотров работы: 224