Чаще всего для осуществления технической коагуляции применяются реагенты, такие как хлорное железо, сернокислый аммоний, сернокислая закись железа.
Метод коагуляции издавна применяют для очистки сточных вод. Ещё в 16 веке до нашей эры, в Древнем Египте люди применяли коагулянты для очистки воды, и в качестве коагулянта они использовали сок сладкого миндаля. Египтянам были известны коагулирующие свойства алюмокалиевых квасцов. А вот в Европе эти свойства начали применять только в середине 18 века.
Физико-химический метод коагуляции обладает рядом достоинств, например, происходит полное удаление из вод загрязнений органического типа, в то же время этот метод не связан с контролем деятельности живых микроорганизмов, метод обеспечивает компактность очистки сооружений и т.д.
В настоящие время уделяется большое внимание вопросам биологической ценности и увеличению выхода пищевых продуктов, получению новых форм пищевой продукции.
В связи с этим рассмотрим коагуляцию молока. Коагуляция молока – это непосредственное превращение его в сгусток (гель), то есть происходит свертывание молока. Сгусток представляет собой твердую фракцию белков молока, которую можно будет легко отделить от жидкой.
Коагуляция белка бывает двух типов: скрытой и истинной. Для скрытой коагуляции характерно связывание мицелл друг с другом на некоторых её участках, при этом образуется пространственная структура, которая называется гелем. Гель при дестабилизации большинства частиц дисперсной фазы охватывает весь объём исходного молока. Скрытую коагуляцию чаще всего называют гелеобразованием.
А вот истинная коагуляция заключается в полном слипании коллоидных частиц и в дальнейшем выпадении дисперсной фазы в осадок.
С помощью метода коагуляции в молочной промышленности получают следующие продукты:
Наименование продукта |
Способ коагуляции |
Реагент-коагулянт |
твердые сыры, |
физиобиологическая |
животный сычужный фермент |
Рассольные сыры |
Термокислотная |
Любой коагулянт |
Мягкие сыры |
Термокислотная |
органические кислоты, молочная сыворотка, бактериальная закваска |
Полумягкие сыры |
физиобиологическая |
животный сычужный фермент |
Коагулянты способны выполнять несколько функций, но самая главная из них – это отделение плотной фракции молока от жидкой. Для этих целей раньше использовали только сычужный фермент, который получали из желудков телят.
В современной жизни (производстве) для формирования сгустка используют:
- Пепсины – экстракты желудков домашнего скота. Чаще используют коровий пепсин, так как его можно использовать для производства рассольных сыров, а для производства мягких, твердых и полумягких сыров пепсины использовать не рекомендуется.
- Микробиальный пепсин – это дрожжи, плесени и грибы, которые естественным образом продуцируют пригодные ферменты для коагуляции.
Стоит отметить, что любой коагулянт можно использовать для приготовления свежих сыров, творога и рассольных сыров.
Для приготовления полумягких и твердых сыров подходит только животный сычужный фермент, так как он вместе с молочнокислыми бактериями участвует в формировании консистенция сыра, его вкуса и способности сохранению его длительное время.
При коагуляции белков молочной жир и вода с растворенными веществами достаточно прочно захватываются образующимся гелем, когда происходит осаждении белков только лишь небольшое количество молочного жира и водной фазы может быть механически удержано осадком.
При невысоких температурах и активной кислотности ведут выработку и созревание сычужных сыров, называемых физиологическими. Это делается для того, чтобы обеспечить возможность осуществления биологической трансформации компонентов молока с минимальными потерями пищевой ценности.
Термокислотный способ коагуляции белков молока используют при производстве мягких сыров, при этом используют различные коагулирующие агенты: органических кислот, молочной сыворотки, бактериальной закваски. Некоторые сыры производятся путем введения в горячее молоко творога, который выступает в качестве осаждающего агента, с последующей термомеханической обработкой смеси белковой массы и внесением различных добавок, таких как сливочное масло, высокожирные сливки, соль, способствующих получению однородной консистенции продукта.
Термокислотная коагуляция представляет собой изменения pH среды путем биологического или искусственного (добавление кислой сыворотки или кислоты) подкисления. Этот способ основан на свойстве казеина осаждаться в изоэлектрической точке при pH 4,6–4,7. Казеин, как и все белковые вещества, обладает электрическим зарядом, обусловленным свободными амино- и карбоксильными группами, эти группы способны образовывать соли с кислотами и основаниями, в результате чего можно судить о амфотерном характере казеина. Заряды казеина(положительный или отрицательный) зависят от pH среды, их можно изменять введением ионов водорода или гидроксильных ионов. При pH выше изоэлектрической точки казеин имеет отрицательный заряд и является анионом, при рН ниже изоэлектрической точки казеин заряжен положительно и соответственно это катион. Когда заряды сбалансированы (изоэлектрическая точка), казеин становится электронейтральным.
Из выше сказанного следует, что термокислотная коагуляция, в отличие от традиционных способов, направлена на повышение степени использования белковых веществ молока в результате совместного осаждения казеина и сывороточных белков.
Технология термокислотного свертывания молока имеет достаточно широкие перспективы благодаря ряду преимуществ. Прежде всего следует отметить, что данный способ получения молочного сгустка характеризуется высокой степенью извлечения белков из молочного сырья за счет осаждения сывороточных белков вместе с казеином. Повышение биологической ценности продуктов, полученных на основе термокислотного свертывания, обусловлено тем, что сывороточные белки имеют сбалансированный аминокислотный состав.
В настоящее время не существует последовательной теории процесса термокислотной коагуляции белков молока, несмотря на развитие практических аспектов термокислотных технологий.
Концентрация ионов кальция в молоке оказывает заметное влияние как на сычужную, так и на кислотную коагуляцию. Поэтому это представляет большой интерес исследования возможного влияния кальция на процесс термокислотной коагуляции молока. Возможность такого влияния вытекает из схожести термокислотной и термокальциевой коагуляции молока, хотя глубокого изучения данного вопроса до сих пор не предпринималось.
Список использованной литературы
Боровская Л.В. Электронный учебно-методический комплекс дисциплины «Физическая и коллоидная химия: учебно-методический комплекс дисциплины» Учебное пособие. ФГУП НТЦ «ИНФОРМРЕГИСТР» Депозитарий электронных изданий. Москва 2010 .
Храмцов, А.Г. Мягкий сыр на основе термокислотной коагуляции белков молока и сыворотки / А.Г. Храмцов, О.А. Суюнчев, А.Ф. Лафишев // Переработка молока. – 2004. – № 1. – С. 10.
Феноменологическая модель термокислотной коагуляции белков обезжиренного молока / Л.А. Остроумов, А.М. Осинцев, И.А. Смирнова и др. // Техника и технология пищевых производств. – 2011. – № 1. – С. 133–139.
Транспортировка и хранение скоропортящихся пищевых продуктов. Данилин В.Н., Петрашев В.А., Боровская Л.В.// Известия высших учебных заведений. Пищевая технология. 1996. № 1-2. С. 7
. 5. Осинцев, А.М. Роль ионов кальция в коллоидной стабильности мицелл казеина / А.М. Осинцев, В.И. Брагинский О.Ю. Лапшакова А.Л. Чеботарев // Техника и технология пищевых производств. – 2009. – № 1. – С. 63–67
Исследование термодинамических свойств белково-полисахаридной системы методом дифференциальной сканирующей калориметрии /Бугаец Н.А., Тамова М.Ю., Боровская Л.В., Миронова О.П. //Известия высших учебных заведений. Пищевая технология Издательство: Кубанский государственный технологический университет .Краснодар, № 5-6,с.112.