АНАЛИЗ СОВРЕМЕННОГО ПОЛОЖЕНИЯ В ОБЛАСТИ ПРОИЗВОДСТВА ГЕННОМОДИФИЦИРОВАННЫХ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР - Студенческий научный форум

IX Международная студенческая научная конференция Студенческий научный форум - 2017

АНАЛИЗ СОВРЕМЕННОГО ПОЛОЖЕНИЯ В ОБЛАСТИ ПРОИЗВОДСТВА ГЕННОМОДИФИЦИРОВАННЫХ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР

Иконникова Ю.Ю. 1
1Воронежский государственный аграрный университет имени императора Петра I
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Генетически модифицированная пища — это продукты питания, полученные из генетически модифицированных организмов(ГМО) - растений, животных или микроорганизмов. Продукты, которые получены при помощи генетически модифицированных организмов или в состав которых входит хоть один компонент, полученный из продуктов, содержащих ГМО, также могут считаться генетически модифицированными, в зависимости от законодательства страны.

По данным на 2015 год, генно-модифицированные растения выращивались в 28 странах, на рынок было допущено 28 генно-модифицированных сельскохозяйственных культур (включая как пищевые, так и кормовые и технические).

Методы получения

Генетически модифицированные организмы получают новые свойства как правило благодаря переносу в геном новых генов. Новые гены могут быть взяты из генома родственных видов (цисгенез) или, теоретически, из любого организма (в случае трансгенеза).

Генетически модифицированные организмы получают методом трансформации при помощи одного из способов: агробактериальный перенос, баллистическая трансформация, электропорация или вирусная трансформация. Большая часть коммерческих трансгенных растений получена при помощи агробактериального переноса или баллистической трансформацией. Обычно для переноса используют плазмиду, которая содержит ген, работа которого придает организму заданные свойства, промотор, который регулирует включение этого гена, терминатор транскрипции, а также кассету, которая содержит селективный ген стойкости к антибиотику канамицину или гербициду. Получение трансгенных сортов нового поколения не предусматривает использование селективного гена, побочные качества которого могут рассматриваться как нежелательные. Зато генетическая конструкция может нести несколько генов, которые необходимы для комплексной работы генетической конструкции.

Цель генетического модифицирования

Генетическая модификация может давать растению и пищевому продукту, который производится из неё, целый ряд признаков. Большинство культивируемых генно-модифицированных организмов обладают устойчивостью к насекомым-вредителям или к гербицидам. Это значительно облегчает культивирование, а также снижает затраты на обработку ядохимикатами.

Устойчивость к гербицидам

Большинство гербицидов действуют избирательно против нежелательных видов растений. Кроме этого существуют гербициды широкого спектра действия, которые влияют на обмен веществ практически всех видов растений, как например глифосат, глюфозинат аммония, или имидазолин.

Механизм действия глифосата заключается в том, что он ингибирует фермент 5-енолпирувил-шикимат-3-фосфат-синтазу, участвующую в синтезе важных аминокислот. Благодаря переносу формы гена 5-енолпируват-шикимат-З-фосфатсинтазы (CP4 EPSPS) из грунтовой бактерии Agrobacterium tumefaciens удалось придать признаки устойчивости к глифосату.

Перенос гена фосфинотрицин-N- ацетилтрансферазы (PAT) из бактерии Streptomyces viridochromogenes обеспечил трансгенным растениям стойкость к гербициду глюфозинат аммония (Либерти — коммерческое название производителя Bayer)

Существуют также сорта, устойчивые к гербициду 2,4-D[1] за счет вставки синтетической формы гена бактерии Sphingobium herbicidovorans.

В 2008 году выращивание трансгенных растений со стойкостью к гербицидам занимало первое место в общем количестве всех выращенных трансгенных растений и составило 63 % или 79 млн из 125 млн гектаров, засеянных трансгенными растениями в мире. Подсчитано, что только выращивание трансгенной сои с устойчивостью к гербицидам с 1996 по 2007 года привело к кумулятивному уменьшению использования общего количества гербицидов на 73 тысячи тонн (4.6 %)[2]. В 2009 году стойкие к гербицидам растения потеснили сорта, устойчивые к насекомым-вредителям и несущие сразу два или три встроенных признака.

Устойчивость к насекомым

Инсектициды на основе бактериального Bt-токсин использовались в сельском хозяйстве с конца 1930-х годов[4]. В органическом земледелии распространено использование бактериальной суспензии Bacillus thuringiensis для борьбы с насекомыми. Перенесённый в геном растения бактериальный ген cry Bt-токсина придает растению устойчивость против ряда насекомых-вредителей. Самые распространённые растения, в которые встраивают ген Bt-токсина - кукуруза (линия MON810 производства Монсанто) и хлопчатник, разработанный и предложенный Монсанто в 1996 году. Была попытка перенести ген Bt-токсина в картофель с целью борьбы с колорадским жуком, однако способ оказался неэффективным, поскольку трансгенный картофель оказался уязвимым к тле Aphidius nigripes[5]. Преимущество трансгенных растений в том, что внедрение генов инсектицидов непосредственно в растение не приводит к уничтожения всех насекомых (в том числе полезных) вследствие обработки полей. Недостатком является то, что инсектицид присутствует в растении перманентно, что делает невозможным его дозировку. Кроме того, в трансгенных сортах первого поколения ген экспрессируется под конститутивным промотором, поэтому продукт его гена присутствует во всех частях растения, даже в тех, которые насекомыми не поражаются. Для решения этой проблемы разрабатываются генетические конструкции под контролем специфических промоторов[6]. В 2009 году трансгенные Bt-растения были самыми распространёнными по количеству культивированных трансгенных растений.

Устойчивость к вирусам

Вирусы вызывают целый ряд заболеваний растений и их распространение тяжело контролировать, способов химической защиты тоже не существует. Самыми эффективными способами борьбы считаются севооборот и селекция стойких сортов. Генетическая инженерия рассматривается как перспективная технология в разработке стойких сортов растений. Самая распространённая стратегия — косупрессия, то есть перенос в растение гена вируса, который кодирует белок его оболочки. Растение производит вирусный белок до того, как вирус в него проникнет, что стимулирует включение защитных механизмов, которые блокируют размножение вируса, в случае его проникновения в растение.

Впервые эту стратегию использовали для спасения папайной индустрии на Гавайях от вируса кольцевой папайной пятнистости. Впервые вирус был идентифицирован в 1940 году, а в 1994 он быстро распространился, в результате чего индустрия оказалась на грани полного уничтожения. В 1990 году начались интенсивные работы по трансформации папайи, которые в 1991 году увенчались успехом. Первые плоды коммерческого сорта папайи «Rainbow» были собраны в 1999 году.

Устойчивость к грибам

Гриб Phytophthora infestans принадлежит к группе растительных паразитов, вызывающих фитофтороз, наносящий значительные убытки при культивировании картофеля и томатов. Самый эффективный способ борьбы с фитофторой — использование фунгицидов (за сезон может требоваться до шестнадцати обработок, что серьёзно загрязняет почву) и выведение сортов, стойких к заболеванию. Методами классической селекции удалось частично перенести гены устойчивости к фитофторе в культурные сорта, однако вместе с ними переносится и ряд генов, которые кодируют нежелательные признаки.

Компания BASF разработала генно-модифицированный сорт картофеля «Fortuna», в который перенесли два гена Rpi-blb1 и Rpi-blb2 устойчивости к фитофторозу из южно-американского дикого сорта картофеля Solanum bulbocastanum. В 2006 году сорт прошёл успешное полевое испытание в Швеции, Нидерландах, Великобритании, Германиии Ирландии.

Устойчивость к засухе

Недостаток влаги вследствие изменения климата или отдельных засушливых периодов приводит к заметной потере урожая, особенно в регионах с неблагоприятными условиями выращивания. Биотехнология ищет возможности для искусственной защиты растений от засухи. Например, ген cspB из особых штаммов бактерии Bacillus subtilis, устойчивых к замерзанию, также придает организму растения качество устойчивости к засухе. Компании BASF и Monsanto разработали сорта кукурузы, которые по данным производителей в полевых исследованиях при неблагоприятных засушливых условиях давали урожайность на 6,7-13,4 % больше, чем конвенционные сорта[9]. Заявка на допуск подана в соответствующие инстанции стран Северной Америки, Европейского союза и Колумбии. Также эти сорта планируется привлечь к программе Water Efficient Maize for Africa с 2015 до 2017 года[10], семенной материал фирмы будут предоставлять фермерам бесплатно.

Устойчивость к солям и алюминию

Засоление грунтов — одна из важных проблем сельскохозяйственного растениеводства. В мире около 60 млн гектаров полей имеют такие изъяны, что делает невозможным их эффективное использование. Способами генной модификации удалось получить рапс, несущий ген ионного транспортера AtNHX1 из арабидопсиса, который делает его стойким к засолению хлоридом натрия до 200 мМоль/л. Других изменений фенотипа в растении не наблюдается.

В кислых грунтах создаются благоприятные условия для освобождения из алюминиевых силикатов трёхвалентных ионов алюминия, которые являются токсичными для растений. Кислые грунты составляют до 40 % плодородных земель, что делает их непригодными для культивирования. Устойчивость к алюминию пробовали сконструировать искусственно, путём переноса в растения рапса гена митохондриальной цитрат-синтазы из арабидопсиса.

Модификация устойчивости к солям и алюминию находится в стадии научных разработок.

Способы проверки на наличие ГМО

Как правило, проверка на наличие ГМО проводится при помощи способа полимеразной цепной реакции (ПЦР). ПЦР предусматривает три основных действия:

  1. Искусственный синтез небольших участков ДНК, праймеров, которые комплементарны участку встроенного в организм гена, способны его химически распознать и специфически с ним связываться.

  2. Когда праймеры находят целевую последовательность, запускается быстрая цепная реакция синтеза встроенного участка ДНК. Таким образом, встроенная целевая молекула ДНК копируется миллионы раз (амплифицируется).

  3. Амплифицированный продукт можно обнаружить (отобразить) при помощи разных устройств. Если продукт обнаруживается, это является свидетельством, что в пробе выявлена ДНК генно-модифицированного организма.

Количественное определение на наличие ГМО: точное количество ГМО в продукте определить невозможно. Долгое время определялось только наличие ГМО в продукте: содержит продукт ГМО или нет. Относительно недавно были разработаны способы количественного определения — ПЦР в режиме реального времени, когда амплифицированный продукт помечается флуоресцентным красителем и интенсивность излучения сравнивается с откалиброванными стандартами. Однако, даже самые лучшие устройства все ещё имеют значительную погрешность.

Количественное определение на наличие ГМО возможно только тогда, когда из продукта можно выделить достаточное количество ДНК. Если возникают трудности с выделением ДНК, которая довольно неустойчивая, разрушается и теряется в процессе обработки продукта (очищение и рафинирование масла или лецитина, термическая и химическая обработка, обработка давлением), тогда количественное определение невозможно[26]. Способы выделения ДНК в разных лабораториях могут быть разными, поэтому показатели количественного значения могут так же различаться, даже если исследуется один и тот же продукт.

Независимо от того, качественное или количественное определение используется для анализа пищевых продуктов на содержание ГМО, недостатком способа является большое количество фальш-положительных и фальш-отрицательных результатов. Самые точные результаты можно получить при анализе необработанного растительного сырья.

Для качественного определения содержания ГМО иногда используют стандартизированные проверочные чип-системы[28]. Способы определения ДНК в разных лабораториях могут отличатся, поэтому показатели количественного значения могут так же различаться, даже если анализируется один и тот же продукт[29], в основе чип-систем лежит принцип комплементарной гибридизации ДНК с меткой, нанесенной на чип. Ограничивающим фактором этого способа является так же эффективное выделение ДНК. Однако подобные проверочные системы не охватывают всего разнообразия ГМО и сложны их определения.

Путь к коммерциализации

В каждой стране путь к коммерциализации ГМО разный. Допуск к продаже и культивированию предусматривает разные процедуры, однако они основаны на одинаковых принципах.

Безопасность: продукт должен быть безопасным и не представлять угрозы здоровью людей или животных. Также он должен быть безопасным для окружающей среды. Безопасность определяется согласно разработанным испытаниям, которые основываются на новейших научных знаниях и применяются с использованием современных технологических средств. Если продукт не подходит под вышеозначенные требования — он не получает разрешения на культивирование или распространение. Если с течением времени в продукте выявляются опасные свойства, он исключается с рынка.

Право выбора: даже если ГМО получает разрешение на культивирование или распространение, потребители, фермеры и предпринимательство должны иметь право выбора — использовать его или нет. Это означает, что в перспективе должна существовать возможность производить продукцию без использования генной инженерии.

Обеспечение принципа права выбора возможно при условии соблюдения двух правил:

Маркировка: самый важный способ для обеспечения права выбора. Где бы и каким образом ГМО не использовали, он должен быть ясно промаркирован. В таком случае потребитель имеет возможность сделать осознанный выбор.

Отслеживание: маркировка так же необходима, даже если ГМО нельзя отследить в остаточном продукте. Это касается производителей и поставщиков продуктов. В этом случае они обязуются информировать потребителей путём выдачи ответственной документации относительно сырья.

Допуск для одной генно-модифицированной культуры в одной стране оценивается от 6 до 15 млн долларов США, сюда включены затраты на приготовление запроса, оценка молекулярных характеристик, состава и токсичности продукта, исследования на животных, характеристика белков на аллергенность, оценка агрономических качеств, разработка способов испытания, подготовка юридических документов для организации экспорта[30]. Затраты оплачивает лицо, подающее запрос на допуск.

Цель создания генетически модифицированных источников пищи отражена в таблице. Таблица – Целевое назначение генноинженерных манипуляций при создании модифицированных культур
Культура Цель
1. Картофель защита от вредных насекомых (колорадского жука), вирусо-устойчивость.
2. Кукуруза защита от насекомых-вредителей, устойчивость к гербицидам, «мужское бесплодие» культуры (предупреждение перекрестного опыления и образования менее ценных гибридов).
3. Папайя вирусоустойчивость
4. Сахарная свекла устойчивость к гербицидам
5. Соя устойчивость к гербицидам, высокое содержание олеиновой кислоты
6. Рапс масличный устойчивость к гербицидам, высокое содержание лау-риновой кислоты, «мужское бесплодие» культуры
7. Томаты замедление созревания, снижение потерь

В последнее время очень актуальной является тема использования в пищу генетически модифициро- ванных продуктов (ГМП). И пока ученые всего мира спорят о вреде и пользе этих продуктов, миллионы лю- дей уже употребляют их, пребывая в неведении. Генетически модифицированные источники пищи (ГМИ) – это используемые человеком в натуральном или переработанном виде пищевые продукты, полученные из генетически модифицированных организмов. Генетически модифицированный организм (ГМО, genetically modified organism, GMO) – организм или несколько организмов, любые неклеточные, одноклеточные или многоклеточные образования, способные к воспроизводству или передаче наследственного генетического материала, отличные от природных организ- мов, полученные с применением методов генной инженерии (genetic engineering) – науки, которая позволяет вводить в геном растения, животного или микроорганизма фрагмент ДНК из любого другого организма с це- лью придания ему определенных свойств и содержащие генно-инженерный материал, в том числе гены, их фрагменты или комбинацию генов [1]. Например, томаты получили ген морозоустойчивости от арктической камбалы, картофель получил ген бактерии, чей яд смертелен для колорадского жука, рис получил ген человека, отвечающий за состав жен- ского молока, который делает злак более питательным. Трансгенные организмы – организмы, подвергшиеся генетической трансформации. В результате вмешательства человека в генетический аппарат микроорганизмов, сельскохозяйственных культур и пород животных стало возможным повысить устойчивость сельскохозяйственных культур и животных к болезням, вредителям и неблагоприятным факторам окружающей среды, увеличить выход про- дукции, получить качественно новое пищевое сырье с заданными свойствами: органолептические показатели, пищевая ценность, устойчивость в процессе хранения, устойчивость к вредителям, заморозкам и т.д.

Экспериментальное создание генетически модифицированных организмов началось еще в 70-е годы XX века. Первое трансгенное растение было создано в 1982 году, всего лишь спустя 29 лет после открытия первичной структуры ДНК. Это был табак. Так началась история противостояния противников и сторонников генетически модифицированных продуктов. В 1992 году в Китае стали выращивать табак, устойчивый к пес- тицидам. Первый шаг к созданию генетически модифицированных продуктов был сделан американскими инженерами в 1994 году, после 10 лет испытаний выпустили на рынок США партию томатов, устойчивых к хранению, с генами хладнокровной рыбы. Полезных потребительских свойств томат не имел. Но зато егоможно было снять с куста еще зеленым, а затем долго хранить. Помещенный в тепло, он быстро становился красным, будто только из теплицы. К 1995 году около 60 видов домашних растений было генетически моди-фицировано: обычная спелая дыня теряет вкусовые качества всего за несколько дней. Генномодифицированная хранится месяцами, оставаясь завидным лакомством. Бананы, побывавшие в руках генетиков, можно собирать зрелыми, а не зелеными. К тому же генетически модифицированные бананы не темнеют, даже когда их очищают от кожуры. В 1999 году в России была зарегистрирована первая генетически модифициро-ванная соя линии 40-3-3 («Monsanto Co» США). На сегодняшний день генетически модифицированные рас-тения рассматриваются в качестве биореакторов, предназначенных для получения белков с заданным ами-нокислотным составом, масел – с жирно-кислотным составом, углеводов, ферментов, пищевых добавок, витаминов и т.д. Возможность использования специфичности и направленности интегрированных генов по-зволяет оптимизировать отдельные части и ткани туш (тушек), улучшить консистенцию, вкусовые и аромати-ческие свойства мяса, изменить структуру и цвет мышечной ткани, степень и характер жирности, рН, жест-кость, влагоудерживающую способность [3] ГМИ входят в состав многих продуктов питания. Например, ГМ кукуруза добавляется в кондитерские и хлебобулочные изделия, безалкогольные напитки. ГМ соя входит в состав рафинированных масел, марга-ринов, жиров для выпечки, соусов для салатов, майонезов, макаронных изделий, вареных колбас, кондитер-ских изделий, белковых биодобавок, кормов для животных и даже детского питания. Из сои получают эмуль-гаторы, наполнители, загустители и стабилизаторы для пищевой промышленности [6]. Современные биотехнологические компании, занимающиеся производством трансгенных продуктов, развиваются стремительными темпами. Остановить производство, в которое были вовлечены огромные инвестиции, практически невозможно. Многие известные компании используют ГМИ: Coca-cola (Coca-cola, Sprite), Pepsi Co (Pepsi, 7UP), Nestle (Nesquik, Kit-Kat), Mars (Snickers, Twix, Milky Way), Uncle Bens, Kellog’s (сухие завтраки), Cadbury (Fruit&Nut). В странах европейского союза (ЕС) с сентября 1998 года принята обязательная маркировка ГМИ на этикетках продуктов, содержание ГМИ составляет более 0,9%. В России действуют Методические указания МУК 2.3.3.3970-00, а также постановление Минтруда РФ от 16.09.2003 №149 на проведение экспертизы продукции. Экспертиза ГМИ осуществляется по трем направлениям: медико-генетическая оценка, медико-биологическая оценка, оценка технологических параметров. С 2002 года в РФ введена обязательная марки-ровка пищевой продукции, содержащей более 5% ГМИ. С 2004 года Постановлением Главного государст-венного санитарного врача РФ снижен уровень содержания ГМИ в продукте, необходимый для обязательной маркировки, с 5% на 0,9% (СанПиН 2.3.21078-01). В список пищевых продуктов, подлежащих обязательному этикетированию, включены продукты, полученные из генетически модифицированных сои (бобы, проростки, концентраты, текстураты, изоляты, мука, молоко, соус), кукурузы (мука, крупа, попкорн, чипсы), картофеля (картофель, п/ф, пюре, хлопья, чипсы, крекеры), томатов (томаты, паста, пюре, сок, соус, кетчуп), кабачков (продукты, произведенные с использованием кабачков), дыни (продукты, произведенные с использованием дыни), папайи (продукты, произведенные с использованием папайи), цикория (продукты, содержащие цико-рий), а также пищевых добавок, произведенных из ГМИ, БАД [5]. Список литературы

1.Genetically Engineered Crops: Experiences and Prospects. — The Natioanal Academies Press, 2016. — P. 420. — ISBN 978-0-309-43735-6.

2.Панчин А. Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей. — М.:АСТ. — 2015. — 432 с. ISBN 978-5-17-093602-1

3. Королев А.А. Гигиена питания [Текст]: Учеб. для студ. высш. учеб. заведений / А.А. Королев. – М.: Академия, 2006. – 528 с.

4. Ловкис З.В. Качество и безопасность продуктов питания [Текст]: Учеб. пособие / З.В. Ловкис, И.М. Почицкая, И.В. Мельситова, В.В. Литвяк. – Минск: РУП «Научно-практический центр Национальной академии наук Беларуси по продовольствию»; Белоруский государственный университет, 2008. – 336 c.

5. Генетически модифицированные продукты [Электронный ресурс] – Режим доступа: http://www.eurolab.ua/encyclopedia/690/5999/?page=2

6. Бочаров, Е.Ф. Генетически модифицированные продукты / Е.Ф. Бочаров // 36,6° в Сибири. – 2005 (май). – №. 4(21)

7. Жаринов, А.И. Вторичное белоксодержащее сырье: способы обработки и использования / А.И. Жари-нов, И.В. Хлебников, И.К. Мадалиев / Мясная пром-сть. – 1993. – № 2. – С. 22–24.

8. Мигунов, В. Генетически модифицированные продукты: действительно ли они опасны? / В. Мигунов // Красота и здоровье. – 2008.

9. Митин, В.В. Оценка эффективности способов структурирования белковых препаратов на основе сис-темного анализа / В.В. Митин, А.И. Жаринов // Науч.-техн. информ. сб. – Вып. 11. АгроНИИТЭ-имясомолпром, сер. Мясная и холод. пром-сть. – М., 1992. – С.14–20.

10. Королев А.А. Гигиена питания [Текст]: Учеб. для студ. высш. учеб. заве-дений / А.А. Королев. – М.: Академия, 2006. – 528 с.

11. Ловкис З.В. Качество и безопасность продуктов питания [Текст]: Учеб. пособие / З.В. Ловкис, И.М. Почицкая, И.В. Мельситова, В.В. Литвяк. – Минск: РУП «Научно-практический центр Национальной академии наук Беларуси по продовольствию»; Белоруский государственный университет, 2008. – 336 c.

12. Генетически модифицированные продукты [Электронный ресурс] – Ре-жим доступа: http://www.eurolab.ua/encyclopedia/690/5999/?page=2

Просмотров работы: 357