РАЗРАБОТКА ТЕХНОЛОГИИ ПЕРЕРАБОТКИ ГУЗА-ПАИ С ПРИМЕНЕНИЕМ СЕРНИСТОЙ КИСЛОТЫ С ЦЕЛЬЮ ПОЛУЧЕНИЯ МОНОСАХАРИДОВ - Студенческий научный форум

VIII Международная студенческая научная конференция Студенческий научный форум - 2016

РАЗРАБОТКА ТЕХНОЛОГИИ ПЕРЕРАБОТКИ ГУЗА-ПАИ С ПРИМЕНЕНИЕМ СЕРНИСТОЙ КИСЛОТЫ С ЦЕЛЬЮ ПОЛУЧЕНИЯ МОНОСАХАРИДОВ

Спабек С.Р. 1, Кудасова Д.Е. 1
1ЮКГУ им. М.Ауезова, Шымкент, Казахстан
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Введение. Растущий интерес к использованию растительной углеводсодержащей биомассы, богатой моносахаридами, обуславливает поиск оптимальных методов её переработки. Основным критерием при переработке отходов является их стоимость, объем, доступность и локализация, а также химический состав и технологические свойства. В Южно-Казахстанской области Республики Казахстан среди сельскохозяйственных культур лидирует хлопчатник. В связи с этим весьма перспективными, на наш взгляд, являются отходы возделывания хлопка. Основную их массу образует гуза-пая – стебли и корневища растений этой технической культуры [1,2]. Большое количество гуза-паи остается на хлопковых плантациях после сбора хлопка в Южном Казахстане. Сравнительно незначительная часть этих отходов используется населением для бытовых нужд в качестве топлива. Другие попытки переработки гуза-паи не нашли какого-либо масштабного практического применения. Часто эти отходы сжигают непосредственно на полях, в основном же запахивают в почву, что влечет риск передачи с находящимися в почве остатками новым вегетациям хлопчатника болезни этой культуры – вилт, являющейся бичем хлопководства [3,4].

Таким образом, гуза-пая являются крупнотоннажным, доступным и перспективным вторичным ресурсом сельскохозяйственного производств на юге Казахстана.

Гидролиз слабыми кислотами является одним из возможных путей получения углеводов из растительной биомассы.

Таким образом, разработка технологии переработки гуза-паи с применением сернистой кислоты является весьма перспективной задачей.

Процесс обработки сырья должен быть недорогим для обеспечения конкурентоспособности технологии и эффективного использования углеводсодержащего сырья [5-7].

Методы исследований.Для получения кислотных гидролизатов использовали гуза-паю. Ее предварительно высушивали при 102ºС в течение 2 ч для доведения до равновесной влажности. Предварительную обработку растительного сырья осуществляли разбавленной сернистой кислотой в диапазоне температур 50-120 °C на специальной установке, котораяпозволяет проводить процессы химического гидролиза в рабочем диапазоне температур от 100С до 190 С при избыточном давлении до 1,6 МПа. Данная установка состояла из масляного термостата объемом с датчиком температуры, нагревателем и терморегулятором , шести капсул для гидролиза объемами по 30 мл. Объект исследования (гуза-паю) взвешивали на аналитических весах. Навески сырья помещали в просушенные капсулы, куда под тягой доливали расчетные количества воды и раствора сернистой кислоты.

Съем каждой из капсул производили через интервалы времени, равные 1/5 от заданной длительности эксперимента. Извлекаемые из термостата капсулы немедленно погружали в воду, охлажденную до 10 - 15 °С. Охлажденные пробы помещали в центрифужные пробирки для отделения не гидролизованного осадка. Разделение гидролизованных проб осуществляли на лабораторной автоматической центрифуге с охлаждением прискорости вращения ротора 2113 об/мин в течение 15 минут. В полученной жидкой фракции, содержащей углеводы, содержание редуцирующих веществ определяли методом Макена-Шоорля, а моносахаридный состав бумажной хроматографией.

Нами осуществлено определение оптимальных режимов предобработки гуза-паи при использовании сернистой кислоты .

Разработка комплексной переработки гуза-паи позволит не только улучшить экологическую ситуацию, но и получить сырье и дополнительные продукты для химической промышленности и биотехнологических производств.

Целью настоящей работы являлось исследование химического гидролиза гуза-паи, с целью повышения выхода ценных продуктов, необходимых для биотехнологии и химической промышленности.

Для реализации данной задачи целью изучения возможности расширения ассортимента растительного сырья и разработки технологии переработки нами был исследован процесс гидролиза полисахаридов гуза-паи (Ф-108, С-1727, 108Ф).

Химический состав гуза-паи приведен в таблице 1. Данные свидетельствуют о пригодности выбранных видов растительного сырья для получения полисахаридов.

Таблица 1 - Химический состав гуза-паи

Наименование компонентов

Содержание, %

Зольные вещества

2,3

Легкогидролизуемые полисахариды

24,7

Трудногидролизуемые полисахариды

42,4

Гекозаны

29,5,

Пентозаны (без уроновых кислот)

23,9

Предобработку гуза-паи проводили в диапазоне температур 190-250 °С при варьировании концентрации сернистой кислоты от 0,6 до 2,5 % масс. Повышение температуры в большей степени, по сравнению с повышением концентрации кислоты, способствовало сокращению продолжительности обработки, необходимой для достижения максимального выхода редуцирующих веществ (РВ). больше, чем реакции разложения моносахаридов. Выход моносахаридов, следовательно, увеличивается вместе с температурой реакции. что влияние концентрации сернистой кислоты при температурах ниже 150° С заметно проявляется, но при повышении температуры до 160 °С оно исчезает. Это может быть объяснено практически полным переходом в паровую фазу сернистого газа (разложение сернистой кислоты) при нагревании. При этом гидролиз, по-видимому, идет только за счет контакта жидкой и паровой фаз и определяется величиной межфазной поверхности, остающейся постоянной в течение процесса.

Результаты и их обсуждение. Оптимальная температура и продолжительность гидролиза гуза-паи сернистой кислотой составили соответственно 160 °С – 170 °С и 30 – 80 минут. Увеличение температуры или продолжительности процесса не приводит к росту концентрации редуцирующих веществ за счет побочных реакций распада и карамелизации сахаров.

Это означает, что на практике могут быть применены только возможные температуры. Верхний предел температуры, в нашем случае, ограничен только практическими факторами такими, как давление в реакторе и возможность контролировать короткое время реакции. Время, необходимое для достижения максимальной концентрации РВ в гидролизате при температуре 150 °С составило 60 минут. С повышением концентрации сернистой кислоты наблюдается увеличение скорости распада сахаров. Оптимальной является концентрация сернистой кислоты 1,77 % масс. Предобработку гуза-паи при варьирование гидромодуля от 1:3 до 1:5 проводили в условиях - 1,6 % масс. сернистой кислотой и при температуре 150 °С. Оставшуюся после предобработки твердую фракцию, отделяли центрифугированием и промывали в течение 10 минут четырехкратным объемом дистиллированной воды, нагретой до 90 °С. Данная обработка позволила дополнительно увеличить выход РВ

Наибольший выход РВ достигнут при гидромодуле 1:3,5, 1:5 и 1:5,8 и составил 26,8 %, 27,0 % и 29,2 % соответственно. Моносахаридный состав гидролизатов был представлен преимущественно глюкозой и ксилозой , концентрация которых достигала в гидролизатах 25 г/л и 22 г/л соответственно. Для характеристики углеводов, извлекаемых при предобработке березового опила сернистой кислотой был определен их моносахаридный состав.

Во всех гидролизатах преобладали глюкоза и ксилоза, содержание которых варьировало от 21,4 до 55,3 моль % и от 13,27до 28,44 моль % от суммы моносахаридов соответственно.

Не смотря на стабилизацию температуры (121±2 °С), давление в гидролизере заметно растет с течением времени при использовании в качестве гидролизующих агентов серной и соляной кислот, что свидетельствует об образовании побочных летучих продуктов. Давление в процессах низкотемпературного гидролиза измерялось манометром МПТС-100, кл.1,5. Повторных экспериментов, с целью оценки погрешности воспроизводимости, в этой серии экспериментов не проводилось, поскольку задача на данном этапе исследований заключалась лишь в выборе гидролизующего агента. Для этого было достаточно получить качественные характеристики. Оказалось, что, в отличие от экспериментов с применением серной и соляной кислот, гидролиз гуза-пая с использованием сернистой кислоты отличается по характеру взаимозависимости давления и. температуры. Значения давления оказались в этом случае практически пропорциональны температуре (рис.1). Фактически при стабилизации температуры давление не возрастало, а оставалось стабильным, определяемым лишь величиной начальной концентрации летучей сернистой кислоты. Это свидетельствует об Р отсутствии или весьма слабом образовании побочных летучих продуктов гидролиза.

Рисунок 1- Изменение давления (ати) и температуры (0С) в процессе гидролиза гуза-паи сернистой кислотой

Выводы. Таким образом, обработка гуза-паи 1,35 % масс. сернистой кислотой при температуре 150 ºС, гидромодуле 1:3 в течение 60 мин позволяет получать гидролизаты с концентрацией редуцирующих веществ до 7,6 %, что будет способствовать их дальнейшему использованию в микробиологической промышленности. При применении гидромодуля 1:4,5 максимальная концентрация редуцирующих веществ в гидролизате достигнута при температуре 160ºС, концентрации сернистой кислоты 1,6 % масс. Выход редуцирующих веществ составил 25.57% от абсолютно сухого вещества гуза-паи. Во всех экспериментах гидролиза гуза-паи наилучшие результаты достигнуты при концентрации сернистой кислоты 1,6 % масс и температуре опыта 150-160 °С.

Литература

1 Сушкова В.И., Воробьёва Г.И. Безотходная конверсия растительного сырья в биологически активные вещества.– Киров, 2007.– 204с.

2 Сербина Т.В. Разработка технологии активных углей из гуза-паи. Автореф. Дис….канд.техн.наук. М. 1993.-56 с.

3 Харина М. В., Емельянов В.М. Исследование кинетики высокотемпературного гидролиза свекловичного жома сернистой кислотой // Вестник Казанского технологического университета. №18. (2013)106-191-193 с.

4 Харина М. В., Емельянов В. М., Аблаев А. Р., Мокшина Н.Е., Ибрагимова Н. Н., Горшкова Т. А. Динамика выхода углеводов при высокотемпературном гидролизе пшеничной соломы сернистой кислотой // Химия растительного сырья. 2014. -№1-. С. 53-59.

5 Аблаев А.Р. Процессы гидролиза лигноцеллюлозсодержащего сырья и микробиологическая конверсия продуктов в анаэробных условиях. Диссертация на соискание кандидата технических наук. Казань ( 2011) г.

6 Нуритдинов Р.М. Эффективность процессов осахаривания соломы и оценка качества гидролизатов для культивирования сахаромицетов. Диссертация на соискание кандидата технических наук. Казань (2012)г.

7 Панфилов В.И. Биотехнологическая конверсия углеводсодержащего растительного сырья для получения продуктов пищевого и кормового назначения. Диссертация на соискание кандидата технических наук. Казань (2004)г

Просмотров работы: 541