ИСКУССТВЕННЫЕ ОРГАНЫ - Студенческий научный форум

XVII Международная студенческая научная конференция Студенческий научный форум - 2025

ИСКУССТВЕННЫЕ ОРГАНЫ

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Актуальность. Многие болезни, в том числе, угрожающие жизни человека, связаны с нарушениями в деятельности конкретного органа (например, почечная недостаточность, сердечная недостаточность, сахарный диабет и др.). Далеко не во всех случаях эти нарушения можно исправить с помощью традиционных фармакологических или хирургических воздействий, поэтому ученые занялись разработкой искусственных органов.

Создание искусственных органов и тканей оформилось в самостоятельную отрасль науки около десяти лет тому назад. Первые достижения этого направления - создание искусственной кожи и хрящевой ткани, образцы которых уже проходят первые клинические испытания в центрах трансплантации. 

В настоящее время ученые ищут оптимальные и менее затратные способы выращивания искусственных органов для того, чтобы трансплантация искусственных органов стала доступной для каждого человека, который в этом нуждается.

Цель проекта – дать характеристику направления искусственных органов и выявить отношение учащихся к данному направлению. Задачи:
1. Провести анализ научной и научно – методической литературы по выбранной теме;

2. Дать характеристику процессу выращивания органов;

3. Посредством анкетирования выявить уровень знаний учащихся об искусственных органах.

Гипотеза: доказать, что выращивание органов — перспективная биоинженерная технология, целью которой является создание различных полноценных жизнеспособных биологических органов для человека. 

Глава 1. Теоретическое обоснование проблемы
1.1 История создания и развития искусственных органов

Искусственные органы - устройства, призванные временно или постоянно заменить функции родных органов реципиента. Могут быть как постоянными, так и временными; как внутренними (имплантироваться в тело), так и внешними

Выращивание органов — перспективная биоинженерная технология, целью которой является создание различных полноценных жизнеспособных биологических органов для человека.

История развития искусственных органов насчитывает не один десяток лет. Создать «запасные части» — заменители естественных органов — люди стремились уже с давних времен. Еще 2000 лет назад греческий историк Геродот рассказывал о воине, который отрубил прикованную ступню, чтобы бежать из плена, и многие годы потом ходил с деревянной ногой. А при раскопках у итальянского города Капуи археологи нашли бронзовую ногу римского легионера, заменившую потерянную им в одном из сражений более 1500 лет назад. В средние века искусственные конечности — протезы стали делать подвижными.

Первые научные разработки в данной области относятся к 1925, когда С. Брюхоненко и С. Чечулин провели опыт со стационарным аппаратом, способным заменить сердце. Вывод из этого опыта состоял в следующем: голова собаки, отделённая от туловища, но подключенная к донорским лёгким и новому аппарату способна сохранять жизнеспособность в течение нескольких часов, оставаясь в сознании и даже употребляя пищу. 1925 год принято считать началом отсчета в истории разработок искусственных органов.

В начале 1937 г.  В. Демихов кустарно изготавливает первый образец имплантируемого сердца и испытывает его на собаке. Но низкие технические характеристики нового прибора позволяют непрерывно использовать его в течение лишь полутора часов, после чего собака погибает.

 В 1943 году нидерландский ученый В. Кольфф разрабатывает первый аппарат гемодиализа, то есть, первую искусственную почку. Через год он уже применяет аппарат во врачебной практике, в течение 11 часов поддерживая жизнь пациентки с крайней степенью почечной недостаточности.

В 1953 г. Дж. Гиббон, ученый из Соединенных штатов, при операции на человеческом сердце впервые успешно применяет искусственные стационарные сердце и лёгкие. Начиная с этого времени, стационарные аппараты искусственного кровообращения становятся неотъемлемой частью кардиохирургии. 

В 1963 Р. Вайт в течение примерно 3 суток поддерживает жизнеспособность отдельного мозга обезьяны.

 В 1969 Д. Лиотта и Д. Кули впервые испытывают в теле человека  имплантируемое искусственное сердце. Сердце поддерживает жизнь пациента в течение 64 часов в ожидании человеческого трансплантанта. Но вскоре после трансплантации пациент погибает.

В течение последующих десятилетий разработки новых аппаратов не производятся. Устраняются ошибки предыдущих изобретений.

В 2007 поставлен рекорд по продолжительности жизни пациента с полностью искусственными (но стационарными) лёгкими: 117 дней. 

В 2008 врачи впервые в истории поддерживают жизнедеятельность пациента с одновременным искусственным восполнением функции сердца и лёгких в течение 16 дней в ожидании донорского сердца. В том же году учёные Калифорнийского университета заявляют о выпуске первого в мире образца портативной искусственной почки.

Помимо этих результатов, в 2008 году происходят знаковые события в области разработки и других искусственных органов и частей тела. Так, компанией Touch Bionics был создан  революционный высокореалистичный протез руки.

В 2010 в Калифорнийском университете разработана первая, имплантируемая бионическая почка, пока что не доведённая до серийного производства.

В настоящее время технология крайне ограниченно применяется на людях, позволяя выращивать для пересадки лишь относительно простые по внутреннему устройству органы, такие как мочевой пузырь, кровеносные сосудыили влагалище. Используя трёхмерные клеточные культуры, учёные научились выращивать «зачатки» искусственных органов, названные органоидами (англ. organoid, не путать с органеллами).

Такие органоиды используются учёными для изучения и моделирования органогенеза, моделирования опухолей и различных заболеваний, которым могут быть подвержены определенные органы, тестирования и скрининга на органоидах различных лекарственных препаратов и токсичных веществ, а также для экспериментов по замене органов или терапии повреждённых органов трансплантатами.

1.2 Технология выращивания внутренних органов

Базовая технология выращивания органов, или тканевой инженерии, заключается в использовании эмбриональных стволовых клеток для получения специализированных клеток той или иной ткани, например гепатоцитов — клеток паренхимы (внутренней среды) печени. Эти клетки затем помещаются внутрь структуры соединительной межклеточной ткани, состоящей преимущественно из белка коллагена.

Таким образом, обеспечивается заполнение клетками всего объема выращиваемого органа. Матрицу из коллагена можно получить путем очистки от клеток донорской биологической ткани или, что гораздо проще и удобнее, создать ее искусственным путем из биоразрушаемых полимеров или специальной керамики, если речь идет о кости. В матрицу помимо клеток вводятся питательные вещества и факторы роста, после чего клетки формируют единый орган или некую «заплатку», призванную заместить собой пораженную часть.

Правда, выращивание искусственной печени, легкого и других жизненно важных органов для пересадки человеку сегодня пока недостижимо, в более простых случаях такая методика успешно применяется. Известен случай пересадки пациентке выращенной трахеи, осуществленной в РНЦ хирургии им. Б.В. Петровского под руководством итальянского профессора П. Маккиарини. В данном случае в качестве основы была взята донорская трахея, которую тщательно очистили от клеток. На их место были введены стволовые клетки, взятые из костного мозга самой пациентки. Туда же были помещены факторы роста и фрагменты слизистой оболочки — их также позаимствовали из поврежденной трахеи женщины, которую предстояло спасти.

Недифференцированные клетки в таких условиях дали начало клетками дыхательного эпителия. Выращенный орган имплантировали пациентке, причем были приняты специальные меры для проращивания имплантата кровеносными сосудами и восстановления кровообращения.

Впрочем, уже существует метод выращивания тканей без применения матриц искусственного или биологического происхождения. Метод нашел воплощение в устройстве, известном как биопринтер. Соединительная ткань и клетки собираются воедино по той же технологии, которую используют при трехмерной печати: движущаяся головка, позиционирующаяся с микронной точностью в трехмерной сети координат, «выплевывает» в нужную точку капельки, содержащие либо клетки, либо коллаген и другие вещества. Правда, эпохи, когда принтеры в клиниках будут способны создавать органы разного назначения и больших объемов, придется еще подождать.

Принтер печатает не единичными клетками, а их шарообразными скоплениями — сфероидами. Каждый напечатанный слой клеток отделяют слоем геля, а уже готовый орган отправляют дозревать в инкубатор. При этом гель, использованный для печати, растворяется, а внутри органа развивается его сосудистая сеть — от сосудов отрастают тончайшие капилляры. Это очень удобно для биоинженеров, потому что получать такие мелкие сосуды они пока не умеют. Пока что эта практика подходит для животных больше чем для человека.

Габор Форгач кроме вышеизложенной идеи, понял, что в будущем станет возможным создание и пищевого мяса подобным образом. Благодаря биоинженерии, его можно будет получать этичным образом — без убийств животных. Подобный проект был запущен доктором Постом и его коллегами в 2013 году. Ученым удалось вырастить мускульную ткань из стволовых клеток быка, развивавшихся в сыворотке из эмбриона теленка. За три месяца они получили около 20 тысяч отдельных мышечных волокон. Правда, изготовление одного гамбургера весом в 140 граммов обошлось в 250 тысяч евро. Вкусовые качества искусственного мяса оказались достаточно хороши, но получилось оно слишком сухим и обезжиренным. Для искоренения этого недостатка исследователи пошли по пути создания особых стволовых клеток, которые смогли бы вырабатывать жир, присутствующий в мясе живых коров. На сегодняшний день эта задача почти решена. Основная проблема состоит в дороговизне блюда. Но как только производство синтетического мяса будет поставлено на поток, его стоимость неминуемо начнет снижаться, значит, это лишь вопрос времени.

Кроме всего вышеперечисленного уже достаточно давно существуют слуховые аппараты. А также постоянно ведутся разработки по усовершенствованию различного рода протезов. Не говоря о стремительно внедряющемся в жизни людей применении экзо скелетов, способных выполнять утраченные функции тех или иных частей тела. А ученым Калифорнийского университета удалось создать протез, который способен выполнять функции сетчатки глаза. Пока что человек способен видеть только размытую картинку, но дальнейшие перспективы достаточно позитивны. Разработка и создание искусственных органов в ведущих западных странах относится к главным государственным программам. Помимо искусственных органов идет разработка протезов и слуховых аппаратов. В России стали намного чаще финансироваться биологические разработки в данной области науки, а также открываться все новые и новые кафедры, направленные на подготовку высококвалифицированных ученых в данном направлении. Не существует единой точки зрения на вопрос применения и использования искусственно-созданных органов. Хотя стоит отметить, что отсутствие единой технологии производства и разработок в данной сфере положительно сказывается на развитии биологической науки. Все меньше времени остается до того момента, когда эксперименты и исследования, проводящиеся повсеместно, приведут к безошибочным результатам. И тогда на первый план уже выйдет проблема использования и распространения трансплантации искусственных органов в народные массы.

1.3. Другие разработки в области искусственных органов


Выращивание простых тканей – уже существующая и использующаяся в практике технология.

Восстановление повреждённых участков кожи уже является частью клинической практики. В ряде случаев используются методы регенерации кожи самого человека, например, пострадавшего от ожога посредством специальных воздействий. Это, например, разработанный Р.Р. Рахматуллиным биопластический материал гиаматрикс, или биокол, разработанный коллективом под руководством Б.К. Гаврилюка. Для выращивания кожи на месте ожога также используются специальные гидрогели.

Также развиваются методы распечатки фрагментов ткани кожи с помощью специальных принтеров. Созданием таких технологий занимаются, например, разработчики из американских центров регенерационной медицины AFIRM4 и WFIRM5.

Доктор Герлах (Jorg Gerlach) с коллегами из Института регенеративной медицины при Университете Питсбурга (Institute for Regenerative Medicine at the University of Pittsburg) изобрели устройство для пересадки кожи, которое поможет людям быстрее излечиться от ожогов различной степени тяжести. Skin Gun распыляет на поврежденную кожу пострадавшего раствор с его же стволовыми клетками. На данный момент новый метод лечения находится на экспериментальной стадии, но результаты уже впечатляют: тяжелые ожоги заживают буквально за пару дней.

Группа сотрудников Колумбийского университета под руководством Горданы Вуньяк-Новакович (Gordana Vunjak-Novakovic) получила из стволовых клеток, засеянных на каркас, фрагмент кости, аналогичный части височно-нижнечелюстного сустава.

Учёные израильской компании Bonus Biogroup(основатель и исполнительный директор - Шай Мерецки, Shai Meretzki) разрабатывают методы выращивания человеческой кости из жировой ткани пациента, полученной посредством липосакции. Выращенную таким образом кость уже удалось успешно пересадить в лапу крысы.

Итальянским ученым из University of Udine удалось показать, что полученная из единственной клетки жировой ткани популяция мезенхимальных стволовых клеток invitro даже в отсутствие специфического структурного матрикса или подложки может быть дифференцирована в структуру, напоминающую зубной зачаток.

В Токийском университете учёные вырастили из стволовых клеток мышей полноценные зубы, имеющие зубные кости и соединительные волокна, и успешно трансплантировали их в челюсти животных.

Специалистам из Медицинского центра Колумбийского университета (Columbia University Medical Center) под руководством Джереми Мао (Jeremy Mao) удалось добиться восстановления суставных хрящей кроликов.

Сначала исследователи удалили животным хрящевую ткань плечевого сустава, а также находящийся под ней слой костной ткани. Затем на место удаленных тканей им были помещены коллагеновые каркасы.

У тех животных, у которых каркасы содержали трансформирующий фактор роста - белок, который контролирует дифференцировку и рост клеток, вновь сформировалась костная и хрящевая ткань на плечевых костях, а движения в суставе полностью восстановились.

Группе американских ученых из The University of Texasat Austin удалось продвинуться в создании хрящевой ткани с меняющимися в разных участках механическими свойствами и составом внеклеточного матрикса.12

В 1997 году, Хирургу Джею Ваканти (Jay Vscanti) из Главной больницы Массачусетса в Бостоне удалось вырастить на спине у мыши человеческое ухо, используя клетки хряща.

Медики Университета Джона Хопкинса удалили пораженное опухолью ухо и часть черепной кости у 42-летней женщины, страдающей раком. Используя хрящевую ткань из грудной клетки, кожу и сосуды из других частей тела пациентки, они вырастили ей искусственное ухо на руке и затем пересадили в нужное место.

Исследователи из группы профессора Ин Чжэн (Ying Zheng) вырастили в лаборатории полноценные сосуды, научившись управлять их ростом и формировать из них сложные структуры. Сосуды формируют ветвления, нормальным образом реагируют на суживающие вещества, транспортируя кровь даже через острые углы.

Ученые во главе с заведующим кафедрой в Университете Райса Дженнифер Вест (Jennifer West) и молекулярным физиологом из Медицинского колледжа Бэйлора (Baylor College of Medicine - BCM) Мэри Дикинсон (Mary Dickinson) нашли свой способ выращивать кровеносные сосуды, в том числе капилляры с использованием в качестве базового материала полиэтиленгликоля (PEG) – нетоксичного пластика. Ученые модифицировали PEG, имитируя экстрацеллюлярный матрикс организма.

Затем они соединили его с двумя видами клеток, необходимыми для образования кровеносных сосудов. Используя свет, превращающий полимерные нити PEG в трехмерный гель, они получили мягкий гидрогель, содержащий живые клетки и ростовые факторы. В результате ученые смогли наблюдать за тем, как клетки медленно образуют капилляры во всей массе геля.

Чтобы протестировать новые сети кровеносных сосудов, ученые имплантировали гидрогели в роговицу глаза мышей, где отсутствует естественное кровоснабжение. Введение красителя в кровь животных подтвердило существование нормального кровотока во вновь образовавшихся капиллярах.

Шведские врачи из университета Готенбурга под руководством профессора Сухитры Сумитран-Хольгешон (Suchitra Sumitran-Holgersson) впервые в мире провели операцию по пересадке вены, выращенной из стволовых клеток пациента.

Участок подвздошной вены длиной около 9 сантиметров, полученный от умершего донора, был очищен от донорских клеток. Внутрь оставшегося белкового каркаса поместили стволовые клетки девочки. Через две недели была проведена операция по пересадке вены с выросшей в ней гладкой мускулатурой и эндотелием.

Прошло больше года с момента операции, антител к трансплантату в крови пациентки обнаружено не было и самочувствие ребёнка улучшилось.

Сотрудники Вустерского политехнического института (США) успешно ликвидировали большую рану в мышечной ткани у мышей путём выращивания и вживления состоящих из белкового полимера фибрина микронитей, покрытых слоем человеческих мышечных клеток.

Израильские ученые из Technion-Israel Institute of Technology исследуют необходимую степень васкуляризации и организации ткани invitro, позволяющую улучшить приживаемость и интеграцию тканеинженерного васкуляризированного мышечного импланта в организме реципиента.

Исследователи из Университета Пьера и Марии Кюри в Париже под руководством Люка Дуая (Luc Douay) впервые в мировой практике успешно испытали на людях-добровольцах искусственную кровь, выращенную из стволовых клеток.

Каждый из участников эксперимента получил по 10 миллиардов эритроцитов, что эквивалентно примерно двум миллилитрам крови. Уровни выживаемости полученных клеток оказались сопоставимы с аналогичными показателями обычных эритроцитов.

Искусственный костный мозг, предназначенный для производства in vitro клеток крови, впервые успешно был создан исследователями в лаборатории химической инженерии Мичиганского Университета (University of Michigan) под руководством Николая Котова (Nicholas Kotov). С его помощью уже можно получать гемопоэтические стволовые клетки и В-лимфоциты – клетки иммунной системы, продуцирующие антитела.

 Доктор Энтони Атала (Anthony Atala) и его коллеги из американского университета Вэйк Форест (Wake Forest University) занимаются выращиванием мочевых пузырей из собственных клеток пациентов и их трансплантацией пациентам.22 Они отобрали нескольких пациентов и взяли у них биопсию пузыря — образцы мышечных волокон и уротелиальных клеток. Эти клетки размножались семь-восемь недель в чашках Петри на имеющем форму пузыря основании. Затем выращенные таким способом органы были вшиты в организмы пациентов. Наблюдения за пациентами в течении нескольких лет показали, что органы функционировали благополучно, без негативных эффектов, характерных для более старых методов лечения. Фактически это первый случай, когда достаточно сложный орган, а не простые ткани, такие, как кожа и кости, был искусственно выращен in vitro и пересажен в человеческий организм. Так же этот коллектив разрабатывает методы выращивания других тканей и органов.

Испанские хирурги провели первую в мире трансплантацию трахеи, выращенной из стволовых клеток пациентки - 30-летней Клаудии Кастильо (Claudia Castillo). Орган был выращен в университете Бристоля (University of Bristol) на основе донорского каркаса из коллагеновых волокон. Операцию провёл профессор Паоло Маккиарини (Paolo Macchiarini) из госпиталя Барселоны (Hospital Clínic de Barcelona).

Профессор Маккиарини активно сотрудничает с Российскими исследователями, что позволило сделать первые операции по пересадке выращенной трахеи в России.

Компания Advanced Cell Technology в 2002 г. сообщила об успешном выращивании полноценной почки из одной клетки, взятой из уха коровы с использованием технологии клонирования для получения стволовых клеток. Применяя специальное вещество, стволовые клетки превратили в почечные.

Ткань вырастили на каркасе из саморазрушающегося материала, созданного в Гарвардской медицинской школе и имеющего форму обычной почки.

Полученные в результате почки около 5 см в длину были имплантированы корове рядом с основными органами. В результате искусственная почка успешно начала вырабатывать мочу. 

Американские специалисты из Массачусетской больницы общего профиля (Massachusetts General Hospital) под руководством Коркута Югуна (Korkut Uygun) успешно пересадили нескольким крысам печень, выращенную в лаборатории из их собственных клеток.

Исследователи удалили печени у пяти лабораторных крыс, очистили их от клеток хозяина, получив, таким образом, соединительнотканные каркасы органов. Затем в каждый из пяти полученных каркасов исследователи ввели примерно по 50 миллионов клеток печени, взятых у крыс-реципиентов. В течение двух недель на каждом из заселенных клетками каркасов сформировалась полностью функционирующая печень. После чего выращенные в лаборатории органы были успешно пересажены пяти крысам.

Ученые из британского госпиталя Хэафилд под руководством Мегди Якуба впервые в истории вырастили часть сердца, использовав в качестве "строительного материала" стволовые клетки. Врачи вырастили ткань, которая работала в точности как сердечные клапаны, ответственные за кровоток в организме людей.

Ученые из University of Rostock (Германия) использовали технологию лазерного переноса-печатания клеток (Laser-Induced-Forward-Transfer (LIFT) cellprinting) для изготовления “заплатки”, предназначенной для регенерации сердца.

Американские ученые из Йельского университета (Yale University) под руководством Лауры Никласон (Laura Niklason) вырастили в лаборатории легкие (на донорском внеклеточном матриксе).

Матрикс был заполнен клетками эпителия легких и внутренней оболочки кровеносных сосудов, взятых у других особей. С помощью культивации в биореакторе исследователям удалось вырастить новые легкие, которые затем пересадили нескольким крысам.

Орган нормально функционировал у разных особей от 45 минут до двух часов после трансплантации. Однако после этого в сосудах легких начали образовываться тромбы. Кроме того, исследователи зафиксировали утечку небольшого количества крови в просвет органа. Тем не менее, исследователям впервые удалось продемонстрировать потенциал регенеративной медицины для трансплантации лёгких.

Группе японских исследователей из Медицинского университета Нара (Nara Medical University) под руководством Есиюки Накадзимы (Yoshiyuki Nakajima) удалось создать фрагмент кишечника мыши из индуцированных плюрипотентных стволовых клеток.

Его функциональные особенности, структура мышц, нервных клеток соответствуют обычному кишечнику. Например, он мог сокращаться для перемещения пищи.

Исследователи израильского института Technion, работающие под руководством профессора Шуламит Левенберг (Shulamit Levenberg), разработали метод выращивания ткани поджелудочной железы, содержащей секреторные клетки, окруженные трехмерной сетью кровеносных сосудов.

Трансплантация такой ткани мышам с диабетом приводила к значительному снижению уровней глюкозы в крови животных.

Ученые из University of Connecticut Health Center (США) разработали метод направленной дифференцировки invitro мышиных эмбриональных стволовых клеток (ЭСК) в клетки-предшественники эпителия тимуса (ПЭТ), которые invivo дифференцировались в клетки тимуса, и восстанавливали его нормальное строение.

Ученые Пру Кауин, профессор Гейл Рисбриджер и доктор Рения Тейлор из Мельбурнского института медицинских исследований Monash, стали первыми, кому с помощью стволовых эмбриональных клеток удалось вырастить человеческую простату в теле мыши.33

Группе специалистов под руководством Сандры Карсон (Sandra Carson) из университета Брауна удалось вырастить первые яйцеклетки в органе, созданном в лаборатории: пройден путь от стадии «молодого граафова пузырька» до полного взросления.

Исследователям из Института регенеративной медицины Уэйк-Фореста (Северная Каролина, США) под руководством Энтони Атала (Anthony Atala) удалось вырастить и успешно пересадить пенисы кроликам. После операции функции пенисов восстановились, кролики оплодотворили самок, у них родилось потомство.

Ученые из Университета Уэйк-Форест в Уинстон-Сейлеме, штат Северная Каролина, вырастили мочеиспускательные каналы из собственных тканей больных. В эксперименте они помогли пятерым подросткам восстановить целостность поврежденных каналов.

Биологи из Токийского университета имплантировали в глазницу лягушки, из которой было удалено глазное яблоко, эмбриональные стволовые клетки. Затем глазницу заполнили специальной питательной средой, обеспечивавшей питание клеток. Через несколько недель эмбриональные клетки переросли в новое глазное яблоко. Причем восстановился не только глаз, но и зрение. Новое глазное яблоко срослось со зрительным нервом и питающими артериями, полностью заместив прежний орган зрения.

Учeные из Caлгрeнcкoй Aкaдeмии в Швeции (The Sahlgrenska Academy) впeрвыe уcпeшно культивирoвaли из cтвoлoвых клeтoк чeлoвeчecкую рoгoвицу. Этo в будущeм пoмoжeт избeжaть дoлгoго oжидaния дoнoрcкoй роговицы

Исследователи университета Калифорнии в Ирвине, работающие под руководством Ганса Кайрштеда (Hans Keirstead), вырастили из стволовых клеток в лабораторных условиях восьмислойную сетчатку, что поможет в разработке готовых к трансплантации сетчаток для лечения таких ведущих к слепоте заболеваний, как пигментный ретинит и макулярная дегенерация. Сейчас они проверяют возможность трансплантации такой сетчатки на животных моделях.

Исследователи Центра биологии развития RIKEN, Кобе, Япония под руководством Йошики Сасаи разработали методику выращивания гипофиза из стволовых клеток, который успешно имплантировали мышам. Проблему создания двух типов тканей ученые решили воздействуя на мышиные эмбриональные стволовые клетки веществами, создающими среду, похожую на ту, в которой формируется гипофиз развивающегося эмбриона, и обеспечили обильное снабжение клеток кислородом. В результате клетки сформировали трехмерную структуру, внешне сходную с гипофизом, содержащую комплекс эндокринных клеток, секретирующих гипофизарные гормоны.

Ученые лаборатории клеточных технологий Нижегородской государственной медицинской академии сумели вырастить нейронную сеть, фактически фрагмент мозга.

Вырастили они нейронную сеть на специальных матрицах – многоэлектродных подложках, которые позволяют снимать электрическую активность этих нейронов на всех этапах роста.

Глава 2. Исследование отношения студентов к проблеме искусственных органов. Организация и методы исследования

Работа над проектом проходила с сентября по апрель 2023-2024 года на базе ОГБПОУ "Ульяновского колледжа культуры и искусства" г.Ульяновска среди студентов 1-х курсов. В исследовании приняли участие 10 человек.

Исследование проходило в два этапа. Первый этап был посвящен сбору и анализу научной информации и литературы. На втором этапе непосредственно проводилось тестирование и обработка полученных результатов.

Чтобы понять, отношение учащихся к использованию искусственных органов, мы составили анкету, в которую включены 7 вопросов:

  • Слышали ли Вы когда-нибудь об искусственных органах?

  • Считаете ли Вы, что разработка и использование искусственных органов идут на благо человека?

  • Как Вы относитесь к использованию искусственных органов?

  • Как вы думаете, искусственные органы способны продлить жизнь человеку?

  • Как Вы считаете, какие искусственные органы были бы актуальны в наше время?

  • Есть ли в вашем окружении люди с искусственными органами?

  • Как Вы относитесь к людям с искусственными органами?

Анализ результатов анкетирования

Итак, чтобы выяснить отношение студентов к теме искусственных органов, мы составили анкету и согласно ей провели опрос.

На первый вопрос положительно ответили все опрашиваемые. Конечно, каждый слышал об искусственных органах.

На второй вопрос положительно ответили 9 опрошенных, они считают, что разработка и использование искусственных органов пойдут человеку на благо.

Положительное отношение к искусственным органам выразили 6 человек, отрицательно - 4, пояснив это тем, что в дальнейшем использование искусственных органов может плохо отразиться на здоровье человека.

На вопрос, способны ли искусственные органы способны продлить жизнь человеку, большинство опрошенных (7 человек из 10) считают, что это направление в науке способно продлить жизнь человеку. Самая наименьшая часть опрошенных (3 человека из 10) не могут дать точный ответ на поставленный вопрос, по их мнению все зависит от ситуации.
Выяснив отношение студентов к использованию внутренних органов, нам стало интересно их мнение, по поводу того какие искусственные органы были бы актуальны в наше время? Итак, первая часть опрошенных (3 человека из 10) не смогли дать точный ответ на этот вопрос. Вторая часть опрошенных (4 человека из 10) считают, что, возможно, в связи с увеличением заболеваемости раком кожи, пересадка кожи вполне актуальна в наше время. И третья часть опрошенных (3 человека из 10) склонны полагать, что, возможно пересадка почки была бы актуальна в наше время.
Следующий вопрос нашей анкеты был сформулирован так: есть ли в вашем окружении люди с искусственными органами? Как оказалось, все опрошенные (10 человек из 10) не имеют в своём окружении людей с искусственными органами.

Заключение

Итак, подводя итоги проекта, мы можем сказать, что выращивание органов — перспективная биоинженерная технология, целью которой является создание различных полноценных жизнеспособных биологических органов для человека. 

В ходе проекта мы выяснили, как развивалось направление по разработке искусственных органов, а так же выявили отношение учащихся к использованию искусственных органов.
В результате работы над первой главой проекта нам удалось выяснить, что искусственные органы способны продлить жизнь человека, а технологии создания искусственных органов разработаны и постоянно совершенствуются.
Таким образом, современные медицинские технологии позволяют заменить полностью или частично больные органы человека. Суть применения искусственных органов в том, что они принимают на себя функции больного или оперируемого органа, что позволяют на время приостановить его работу, либо, если лечение не дает положительного результата, заменить его. С каждым днем направление искусственных органов развивается, тем самым возрастает их значение в современной медицине.

Список использованных источников

  • Климушева Н.Ф. Трансплантация солидных органов: пути оптимизации и повышения эффективности: дис. докт. мед. наук. – М., 2016. – 248 с.

  • Готье С.В., Мойсюк Я.Г., Хомяков С.М., Ибрагимова О.С.Развитие органного донорства и трансплантации в российской федерации в 2006–2010 годах. 3 сообщение регистра российского трансплантологического общества // Вестник трансплантологии и искусственных органов. – 2011. – Т. 13, № 2. –С. 6–20.

  • Готье С.В., Хомяков С.М. Оценка потребности населения в трансплантации органов, донорского ресурса и планирование эффективной сети медицинских организаций (центров трансплантации) // Вестник трансплантологии и искусственных органов. – 2013. – Т. XV, № 3. – С. 11–24.

  • Готье С.В. Современное состояние трансплантологии в России // Трансплантология. – 2012. – № 4. – С. 14–19.

  • Доклад общественного совета председателя военно-промышленной комиссии при правительстве РФ. – М., 2013. –106 с.

  • Андреева Т.М., Поликарпов А.В., Огрызко Е.В. Динамика травматизма у взрослого населения в Российской Федерации за 2010–2014 годы // Менеджер здравоохранения. – 2016. –№ 6. – С. 17–26.

  • https://nauka.tass.ru/nauka/6819332

  • https://www.popmech.ru/science/14200-iskusstvennye-organy-chelovek-umeet-vse/

  • https://regenerative-med.ru/

  • https://nature-wonder.livejournal.com/230914.html

  • https://www.bbc.com/ukrainian/features-russian-43912837

Просмотров работы: 967