Развитие радиосвязи - Студенческий научный форум

XVI Международная студенческая научная конференция Студенческий научный форум - 2024

Развитие радиосвязи

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

В своей повседневной жизни мы не задумываемся, когда слушаем радио, смотрим телевизор, работаем на компьютере, звоним по сотовому телефону. В каждом из этих вещей множество электроники, которая существует благодаря радиотехнике.А ведь всего лишь 120 лет назад о таком и мечтать нельзя было: электричество было загадкой, подвластной только избранным! Сегодня же с азами электроники мы знакомимся в детстве.

Современный мир не имел бы такой вид, если бы не такие выдающиеся ученые, как Герц, Попов, Кальцекки, Онести, Бернулли, Шокли, Браттейн, Бардин, Зворыкин и многие другие. Они создавали различные приборы, устройства, детали, без которых невозможна работа современных устройств.

Вся современная техника работает по принципам радиоэлектроники, начиная от детской игрушки и заканчивая суперкомпьютером. Использование радио воистину безгранично: это и наш повседневный быт и высокие технологии. Радиоэлектроника применяется в медицине, биологии, химии, программировании (его бы просто не было без радиотехники!) и многих областях науки и техники. Практически всё медицинское оборудование (томографы, компьютеры, термометры, манометры…) существует благодаря радиотехнике.

На производстве качество зеркал проверяется при помощи фототранзисторов. На основе фотодиода работают счетчики количества выпущенной продукции.

Метеонаблюдения ведутся при помощи радиозондов. Космические аппараты, спутники, станции поддерживают связь с землёй при помощи радиоаппаратуры.

История создания

Основоположником всей современной радиотехники был выдающийся ученый Генрих Герц. Именно он доказал на практике теорию Максвелла, сгенерировав и обнаружив радиоволны. С 1889 года воспроизводя на лекциях и докладах опыты Герца, русский физик Попов видоизменил их, стремясь найти наиболее чувствительный индикатор «электрических волн». В 1894 занялся изучением влияния электрических раз­рядов на проводимость металлических порошков и сконструировал первый свой (изобретенный Кальцекки - Онести и Э. Бернулли) когерер для обнаружения электромагнитных волн – в виде стеклянной трубки с металлическими опилками.

К началу 1895 года Попов создал «грозоотметчик», который позволял надежно регистрировать приближение грозы на расстоянии до 30 км. В это устройство входили когерер — приспособление со звонком для автоматического восстановления чувствительности когерера встряхиванием, реле, приводившее в действие звонок, и даже приемная антенна в виде длинного вертикального провода. Таким образом, Попов создал прототип первого приемника. Он продемонстрировал его 25 апреля (7 мая) 1895 на заседании физиче­ского отделения Российского физико-химического общества и прочитал доклад «Об отношении металлических порошков к электрическим колебаниям», причем высказал мысль о возможности применения грозоотметчика для пере­дачи сигналов на расстояние. 12 (24) марта 1896 на заседании физического отделения Российского фи­зико-химического общества Попов при помощи своих приборов наглядно про­демонстрировал передачу сигналов на расстояние 250 м, передав первую в мире радиограмму из двух слов «Генрих Герц». Несколько позднее создал подобные же приборы и провел с ними экспе­рименты итальянский физик и инженер Г. Маркони. В 1897 он получил патент на применение электромагнитных волн для беспроволочной связи. Благодаря большим материальным ресурсам и энергии Маркони, не имевший специаль­ного образования, добился широкого применения нового способа связи. К сожалению, Александр Степанович Попов не имел материальных ресурсов и поэтому не дожил до вручения ему Нобелевской премии за развитие радиоэлектроники. Её отдали Маркони в 1909.

Строение и принцип работы

Весьма широкий участок радиоволн, отведенный для радиовещательных станций, условно подразделен на несколько диапазонов: длинноволновый (со­кращенно ДВ), средневолновый (СВ), коротковолновый (КВ), ультракоротко­волновый (УКВ). В нашей стране длинноволновый диа­пазон охватывает волны длиной от 735,3 до 2000 м, что соответствует частотам 408 —150 кГц; средне­волновый — радиоволны длиной от 186,9 до 571,4 м, что соответствует часто­там 1605—525 кГц; коротковолновый — радио­волны длиной от 24,8 до 75,5 м, что соответствует частотам 12,1 — 3,95 МГц; ультракоротковолновый — радио­волны длиной от 4,11 до 4,56 м, что соответствует частотам 73 — 65,8 МГц.

Радиоволны УКВ диапазона называют также метровыми волнами; вообще же ультракороткими волнами называют все волны короче 10 м. В этом диапа­зоне ведутся телевизионные передачи, работают связные радиостанции, обору­до­ванные на автомашинах пожарной охраны, такси, медицинского обслужива­ния населения на дому, безопасности уличного движения.

Коротковолновые радиовещательные станции неравномерно распределены по КВ диапазону: больше всего их работает на волнах длиной около 25, 31, 41 и 50 м. Соответственно этому коротковолновый радиовещательный диапазон подразделяется на 25, 31, 41 и 50-метровый поддиапазоны.

Согласно международному соглашению волна длиной 600 м (500 кГц) от­ведена для передачи сигналов бедствия кораблями в море — S0S. На этой волне работают все аварийные морские радиопередатчики, на эту волну настроены приемники всех спасательных станций и маяков.

В общем случае процесс принцип работы приема сигнала выглядит следующим образом: электромагнитные волны наводят в антенне токи высокой частоты; эти токи поступают на входной контур; контур выделяет из множества частот только узкую полосу, на которую он настроен; из высокочастотного сигнала необходимо выделить скрытый в нем сигнал звуковой частоты (звуковую информацию); электрический сигнал звуковой частоты надо преобразовать в акустический сигнал, который можно прослушать.

Построение опытного радиоприёмника и передатчика

Приёмник коротковолновика-наблюдателя

Рис. 1. Принципиальная схема приемника

Принципиальная схема приемника приведена на рисунке. Он супергете­родинного типа и рассчитан на прием сигналов станций в любительских КВ диапазонах 80 м (3,5-3,65 МГц), 40 м (7-7,1 МГц) и 20 м (14-14,35 МГц), рабо­тающих как телефоном (ТЛФ), так и телеграфом (ТЛГ).

Катушки L1 — L6 намотаны на трехсекционных каркасах контуров ПЧ, имеющих ферритовые подстроечные сердечники, и содержат: L1 и L4 — по 10 витков провода ПЭЛШО 0,25, L2, L3, L5 и L6 — соответственно 22, 40, 20 и 35 витков провода ПЭЛШО 0,15. Их витки равномерно распределены во всех секциях каркаса. Катушки и намотан­ные проводом ПЭВ 0,15, помещены в броневой сердечник каркаса с экраном контура ПЧ. Катушка L7 содер­жит 75 вит­ков, L8 — 15 витков.

Постоянные резисторы — МЛТ; переменные резисторы — СП или СПО, но резисторы R1 и R16должны быть группы В, а R6 и R8 — группы А. Конден­са­торы С1, С2, С6, С5 - типа КЛС, КСО; С3 - С5и С8 - ПМ, КСО, БМ; С18 и С19— К50-1, К50-3 или ЭМ; остальные конденсаторы — КЛС, МБМ.

Переключатель диапазонов В1 — галетный на три положения; переключа­тель режимов работы В2и выключатель питания В3 — тумблеры ТВ2-1. Головные телефоны высокоомные.

Рис.2. Усилитель на транзисторах раз­ной структуры.

Дуплексная ЧМ радиостанция

Передающая часть радиостанции состоит из самого передатчика и линейного 9-ти каскадного усилителя высокой частоты с термостабилизацией работы. Первые пять каскадов по упрощенной схеме, выходные два с компенсацией потерь. Схема передатчика показана на рисунке 3.

Рис.3. Схема передатчика.

Генератор передатчика собран по схеме емкостной трехточки. Частотная модуляция осуществляется изменением емкости варикапа VD2 за счет подаваемого напряжения с микрофона. Изменение напряжения на микрофоне, за счет воздействия звука, достаточно для получения требуемой девиации частоты без применения дополнительного микрофонного усилителя. За счет параметрического стабилизатора напряжения, собранного на R2 и VD1, обеспечивается стабильная работа генератора передатчика и стабильная частота от изменения напряжения питания. Конденсатор С4 керамические подстроечные емкостью 4/20 пФ. Конденсатор С3 переменный. Катушка L2 бескаркасная наматывается на оправке диаметром 4мм проводом ПЭВ2-0,31 6 витков с отводом от 2-го считая от верхнего по схеме конца. Дроссель L1 50мкГн (60 витков на сердечнике 400Н, 600Н диаметром 2,8 мм и длиной 12...14 мм). Транзистор КТ603 можно заменить на КТ646. Настройка передатчика производится на свободный участок диапазона УКВ 88-108 МГц конденсатором С3 и сдвигая/раздвигая витки катушки L2.

Схема первых пять каскадов изображена на рисунке 2.

Рис. 4. Схема усилителя.

На рисунке изображен только один каскад, т. к. они все собраны по одной схеме. Предварительные каскады собраны по схеме с общим эмиттером (ОЭ) с термостабилизацией режима работы транзисторов. Транзисторы КТ315 или ГТ308 (у последних больший коэффициент усиления). В двух последних использованы транзисторы КТ914А (для них подобраны свои сопротивления).

Рис. 5. Схема оконечного каскада.

Оконечный каскад собран по классической схеме с термостабилизацией работы и дополнительными деталями для компенсации потерь в усилении. Транзисторы - мощные высокочастотные, посаженные на теплоотвод.

Для приёмной части подойдёт любой малогабаритный радиоприёмник, работающий в диапазоне 64 – 108 МГц, только придется сделать антенну 0,5 метра (она оказывает наименьшее сопротивление сигналу) и поставить дополнительно усилитель ВЧ.

Список литературы

1. Борисов В. Г. «Юный радиолюбитель» [текст, иллюстрации] - М.: Радио и связь, 1979 год – 573 с.

2. Гуткин Л. С. «Современная радиолюбительская электроника и её проблемы [текст]/Л. С. Гуткин – М.: Советское радио, 1968 год – 102 с.

3. Костиков В. «Как построить радиоприёмник» [текст]/В. Костиков – М.: ДОСААФ, 1964 год – 245 с.

4. http://www.peoples.ru/scince/informatik

5. http://school.ort.spb.ru/library/physics/11class/lesson_18/lesson_18.ht

6. http://vova1001.narod.ru/fizika.htm

Просмотров работы: 200