Физические основы работы приборов, работающих на основе явления электромагнитной индукции - Студенческий научный форум

XV Международная студенческая научная конференция Студенческий научный форум - 2023

Физические основы работы приборов, работающих на основе явления электромагнитной индукции

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Электромагнитная индукция — это явление, которое даже в своём названии содержит два ключа, комбинацию двух компонентов. Речь идёт про электрические и магнитные явления соответственно, которые между собой неразрывно связаны. Они оказывают взаимное влияние друг на друга, из чего при правильном подходе можно извлечь различные эффекты. С одной стороны, при движении электрических зарядов создаётся магнитное поле. И это действует также наоборот, то есть, изменения магнитного поля оказывают влияние на перемещение электрических зарядов, что образует электрический ток.

Генератор тока

Это устройство создаётся достаточно просто. Прежде всего, понадобится спровоцировать изменение магнитного поля, как вариант при помощи перемещаемого магнита. Этого можно добиться сторонним воздействием на магнит, находящийся в пределах замкнутой цепи. Подобные манипуляции спровоцируют образование электрического тока в системе. Созданный таким образом генератор позволит в дальнейшем при его применении на электростанциях трансформировать механическую энергию в электрическую. После этого выработанное электричество направляется к пользователям. Передача осуществляется по проводам, энергия может быть использована для различных нужд.

Источниками механической энергии могут быть следующие явления:

Сжигание угля.

Движение воды.

Сила ветра.

Сгорание дизельного топлива.

Магнитный поток

Магнитным потоком через площадь S контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции B , площади поверхности S , пронизываемой данным потоком, и косинуса угла α между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Рис. 1 – Магнитный поток через поверхность S

Обозначение магнитного потока– ​Φ​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м2, расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​α​ магнитный поток может быть положительным (α < 90°) или отрицательным (α > 90°). Если α = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь +каждого из участков, на которые можно разбить данную поверхность.

Радиовещание

Переменное магнитное поле, возбуждаемое изменяющимся током, создаёт в окружающем пространстве электрическое поле, которое в свою очередь возбуждает магнитное поле, и т.д. Взаимно порождая друг друга, эти поля образуют единое переменное электромагнитное поле - электромагнитную волну. Возникнув в том месте, где есть провод с током, электромагнитное поле распространяется в пространстве со скоростью света -300000 км/с.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – еи е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

Рис. 2 - Трансформатор

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

Рис. 3 – Работа магнитопровода

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

В связи с внедрением микроэлектронных и микропроцессорных приборов, имеющих очень малое потребление цепей тока и напряжения, разрабатываются трансформаторы, в которых информация о значениях тока и напряжения передается с помощью волоконно-оптических каналов. Существует несколько способов выполнения таких измерительных трансформаторов. Один из них основан на установке на потенциале ЛЭП маломощных датчиков тока и напряжения и системы преобразования информации о токах и напряжениях в цифровую форму. Эта информация передается по оптическому каналу, имеющему хорошие изолирующие свойства, на оптико-электронные приемники, расположенные на потенциале земли, где осуществляется обратное преобразование световых импульсов в напряжения, пропорциональные току и напряжению ЛЭП [1].

Список литература:

Трансформаторы тока и схемы их соединения [Электронный ресурс]. URL:https://www.elec.ru/viewer?url=/library/info/relejnaja_zaschita_3_4_5_6.doc

В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.

В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.

. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.

4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.

5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

https://fizi4ka.ru

https://profazu.ru

https://www.sites.google.com

https://ru.wikipedia.org

Просмотров работы: 38