Явление электромагнитной индукции и его применение в технике - Студенческий научный форум

XV Международная студенческая научная конференция Студенческий научный форум - 2023

Явление электромагнитной индукции и его применение в технике

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Явление электромагнитной индукции и его применение в технике

В настоящее время в основе многих устройств лежит явление электромагнитной индукции, например в двигателе или генераторе электрического тока, в трансформаторах, радиоприемниках и многих других устройствах.

Определение

Электромaгни́тная инду́кция — явление возникновения электрического токаэлектрического поля или электрической поляризации при изменении магнитного поля во времени или при движении материальной среды в магнитном поле. Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила (ЭДС), возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

То есть благодаря этому явлению мы можем преобразовывать механическую энергию в электрическую, и это замечательно. Ведь до открытия этого явления люди не знали о методах получения электрического тока кроме как от источников тока.

Явление электромагнитной индукции было открыто Майклом Фарадеем в 1831 году. Он опытным путем установил, что при изменении магнитного поля внутри замкнутого проводящего контура в нем возникает электрический ток, который назвали индукционным током. Воспроизведем пару классических опытов Фарадея.

Если в соленоид (катушка индуктивности), который замкнут на гальванометр, вдвигать или выдвигать постоянный магнит, то в моменты его вдвигания или выдвигания мы видим отклонение стрелки гальванометра (возникает индукционный ток); при этом отклонения стрелки при вдвигании и выдвигании магнита имеют противоположные направления. Отклонение стрелки гальванометра тем больше, чем больше скорость движения магнита относительно катушки. При смене в опыте полюсов магнита направление отклонения стрелки также изменится. Для получения индукционного тока можно оставлять магнит неподвижным, тогда нужно относительно магнита перемещать соленоид.

Если рядом расположить две катушки (например, на общем сердечнике или одну катушку внутри другой) и одну катушку через ключ соединить с источником тока, то при замыкании или размыкании ключа в цепи первой катушки во второй катушке появится индукционный ток. В моменты включения или выключения тока наблюдается отклонение стрелки гальванометра, а также в моменты его уменьшения или увеличения, а также при перемещении катушек друг относительно друга. Направления отклонений стрелки гальванометра также имеют противоположные направления при включении или выключении тока, его увеличении или уменьшении, приближении или удалении катушек.

Исследуя результаты своих многочисленных опытов, Фарадей пришел к заключению, что индукционный ток возникает всегда, когда в опыте осуществляется изменение сцепленного с контуром потока магнитной индукции (магнитного потока). Например, при повороте в однородном магнитном поле замкнутого проводящего контура в нем также появляется индукционный ток  в этом случае индукция магнитного поля вблизи контура остается постоянной, а меняется только поток магнитной индукции сквозь контур.

В результате опыта было также установлено, что значение индукционного тока абсолютно не зависит от способа изменения потока магнитной индукции, а определяется лишь скоростью его изменения (также в опытах Фарадея доказывается, что отклонение стрелки гальванометра (сила тока) тем больше, чем больше скорость движения магнита, или скорость изменения силы тока, или скорость движения катушек).

Открытие явления электромагнитной индукции имело огромное значение, поскольку появилась  возможность получения электрического тока с помощью магнитного поля. Этим открытие дало взаимосвязь между электрическими и магнитными явлениями, что в дальнейшем послужило толчком для разработки теории электромагнитного поля.

Практическое применение явления электромагнитной индукции.

Радиовещание

Переменное магнитное поле, возбуждаемое изменяющимся током, создаёт в окружающем пространстве электрическое поле, которое в свою очередь возбуждает магнитное поле, и т.д. Взаимно порождая друг друга, эти поля образуют единое переменное электромагнитное поле - электромагнитную волну. Возникнув в том месте, где есть провод с током, электромагнитное поле распространяется в пространстве со скоростью света -300000 км/с.

Магнитотерапия

В спектре частот разные места занимают радиоволны, свет, рентгеновское излучение и другие электромагнитные излучения. Их обычно характеризуют непрерывно связанными между собой электрическими и магнитными полями.

Синхрофазотроны

В настоящее время под магнитным полем понимают особую форму материи состоящую из заряженных частиц. В современной физике пучки заряженных частиц используют для проникновения в глубь атомов с целью их изучения. Сила, с которой действует магнитное поле на движущуюся заряженную частицу, называется силой Лоренца.

Расходомеры – счётчики

Метод основан на применении закона Фарадея для проводника в магнитном поле: в потоке электропроводящей жидкости, движущейся в магнитном поле наводится ЭДС, пропорциональная скорости потока, преобразуемая электронной частью в электрический аналоговый/цифровой сигнал.

Генератор постоянного тока

В режиме генератора якорь машины вращается под действием внешнего момента. Между полюсами статора имеется постоянный магнитный поток, пронизывающий якорь. Проводники обмотки якоря движутся в магнитном поле и, следовательно, в них индуктируется ЭДС, направление которой можно определить по правилу "правой руки". При этом на одной щетке возникает положительный потенциал относительно второй. Если к зажимам генератора подключить нагрузку, то в ней пойдет ток.

Трансформаторы

Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформатор представляет собой сердечник из тонких стальных изолированных одна от другой пластин, на котором помещаются две, а иногда и больше обмоток (катушек) из изолированного провода. Обмотка, к которой присоединяется источник электрической энергии переменного тока, называется первичной обмоткой, остальные обмотки - вторичными.

Если во вторичной обмотке трансформатора намотано в три раза больше витков, чем в первичной, то магнитное поле, созданное в сердечнике первичной обмоткой, пересекая витки вторичной обмотки, создаст в ней в три раза больше напряжение.

Применив трансформатор с обратным соотношением витков, можно так же легко и просто получить пониженное напряжение.

Список литературы:

https://ru.wikipedia.org/wiki/Электромагнитная_индукция

https://portal.tpu.ru/SHARED/u/ULENIKOV/academic/Tab1/lek11.pdf

Техническая библиотека lib.qrz.ru- URL: http://lib.qrz.ru/node/1101

https://www.sites.google.com/site/zakonelektromagnitnojindukcii/home/prakticeskoe-primenenie-avlenia-elektromagnitnoj-indukcii

https://portal.tpu.ru/SHARED/u/ULENIKOV/academic/Tab1/lek11.pdf

Доломатов М.Ю., Бахтизин Р.З., Шарипов Т.И. Физические основы наноэлектроники: учебное пособие / М.Ю. Доломатов, Р.З Бахтизин, Т.И. Шарипов. – Москва: Юрайт, 2022 – 100 с. – Текст: непосредственный.

Просмотров работы: 135