ЭНЕРГИЯ ВЕТРА - Студенческий научный форум

XIII Международная студенческая научная конференция Студенческий научный форум - 2021

ЭНЕРГИЯ ВЕТРА

Беляков Л.Ю. 1
1ФГБОУ ВО «Санкт-Петербургский государственный аграрный университет», факультет технических систем, сервиса и энергетики
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Энергия ветра — это кинетическая энергия движущегося воздуха. Ветер, обладающий энергией, появляется из-за неравномерного нагрева атмосферы солнцем, неровностей поверхности земли и вращения Земли. Скорость ветра определяет количество кинетической энергии, которая может быть преобразована в механическую энергию или электроэнергию. Механическая энергия может использоваться, например, для помола зерна и перекачивания воды. Механическая энергия может также использоваться для работы турбин, которые производят электричество. Данная работа сосредоточена именно на ветровой электроэнергии, а не на других неэлектрических формах энергии ветра.

Существует два основных способа, с помощью которых энергия ветра может быть преобразована (как для механических, так и для электротехнических целей): использование либо силы «аэродинамического сопротивления», либо «подъема». Способ аэродинамического сопротивления означает простое размещение одной стороны поверхности против ветра, в то время, как другая сторона находится с подветренной стороны. Движение за счет аэродинамического сопротивления происходит в том же направлении, что и дует ветер. Способ подъема несколько изменяет направление ветра и создает силу, перпендикулярную направлению ветра. Способ аэродинамического сопротивления менее эффективен, чем способ подъема.

Ветрогенераторы можно разделить на две категории: промышленные и домашние (для частного использования). Устройство ветроэлектрической установки в упрощенном виде представлено на рисунке. 1.

Концентрация энергии ветра колеблется в широких пределах от 10 Вт/м-2 (при легком ветерке 2,5 м/сек) и до 41000 Вт/м-2, во время урагана со скоростью ветра 40 метров в секунду (м/с) или 144 км/час. В общем, энергия ветра пропорциональна кубу скорости ветра. Это означает, что электрическая мощность чрезвычайно чувствительна к скорости ветра (при удвоении скорости ветра мощность увеличивается в восемь раз).

Технология ветротурбин

Возможность производства электроэнергии определяется конструкцией ветровых турбин. Все ветровые турбины состоят из лопастей, которые вращают ось, соединенную с генератором, который и производит электрический ток.

Ветровые турбины могут быть расположены практически везде, где есть ветер, например, на море, на суше и в застроенном месте.

Ветровые турбины имеют различные размеры и номинальную мощность. Самая большая турбина имеет лопасти с размахом большим, чем длина футбольного поля, высоту 20-этажного здания и производит электроэнергию достаточную для электроснабжения 1400 зданий. И, наоборот, ветровая турбина размером с небольшой дом имеет лопасти диаметром от 8 до 25 футов, высоту — свыше 30 футов, и может обеспечивать электроэнергией полностью электрифицированное здание или малое предприятие.

Размер и мощность ветровых турбин колеблется в широких пределах. Выделяются три основных типа ветровых турбин: с горизонтальной осью, с вертикальной осью и канальные.

Турбины с горизонтальной осью (Пропеллерные ветровые турбины)

Пропеллерные ветровые турбины (сокращенно ПВТ) в настоящее время доминируют. Этот вид похож на ветряную мельницу с лопастями в виде пропеллера, которые вращаются вокруг горизонтальной оси.

Пропеллерные ветровые турбины имеют основную ось ротора и электрический генератор в верхней части мачты. Ось ротора должна быть направлена в сторону ветра. Малые турбины ориентируются по ветру с помощью простых направляющих, установленных перпендикулярно лопастям ротора, в то время как в больших турбинах обычно используется датчик ветра, управляющий поворотным двигателем. Большинство крупных ветровых турбин имеют редуктор, который преобразует медленное вращение ротора в быстрое вращение генератора, что важно для выработки электроэнергии.

Лопасти ветряных турбин изготавливаются жесткими, для того чтобы предотвратить удар лопастей о мачту при сильном ветре. Кроме того, лопасти расположены на значительном расстоянии от мачты и иногда немного наклонены.

Так как за мачтой создается турбулентность, турбины, как правило, располагаются с той стороны, откуда дует ветер. В противном случае, турбулентность может привести к авариям из усталостных напряжений, что снижает надежность установки. Тем не менее, несмотря на проблемы турбулентности, построены установки с расположением турбины по направлению ветра, так как они не нуждаются в дополнительном механизме для их ориентации по ветру, и, во время сильного ветра, их лопасти могут сгибаться, что уменьшает зону скольжения и таким образом сопротивление ветру.

Ветровые турбины с вертикальной осью (Виндроторные ветровые турбины)

Виндроторные ветровые турбины (ВВТ) бывают разных типов, но все они имеют общую черту: основной вал ротора расположен вертикально (а не горизонтально).

Различные модели разрабатываются специально для мест, где направление ветра очень изменчиво или беспокойно. ВВТ, как правило, считаются более легкими в установке и обслуживании, так как генератор и другие основные компоненты могут быть размещены близко к земле (нет необходимости в том, чтобы мачта держала компоненты турбины, а компоненты становятся более доступны).

ВВТ, как правило, менее эффективны, чем ПВТ, по следующим причинам:

Они часто создают сопротивление при вращении.

Часто установлены на более низкой высоте (земля или крыша здания), где скорость ветра меньше.

Наличие проблем, связанных с вибрацией, например, шум и более быстрый износ и разрыв опорной конструкции (так как воздушный поток имеет большую турбулентность на низкой высоте).

Таблица. ПВТ и ВВТ: преимущества и недостатки

ВВТ Дарье

Запатентованная французским авиационным инженером Жоржем Жан-Мари Дарье в 1931 году, ветряная турбина Дарье часто называется «венчиком для взбивания яиц» из-за ее внешнего вида. Она состоит из нескольких вертикально направленных лопастей, которые вращаются вокруг центральной оси.

Разница между ПВТ и ВВТ Дарье состоит в том, что ось пропеллерной турбины всегда сталкивается с ветром, а турбина Дарье представляет собой цилиндр перпендикулярный воздушному потоку. Таким образом, часть турбины работает, а другая часть просто крутиться по кругу.

Разница между ПВТ и ВВТ Дарье состоит в том, что ось пропеллерной турбины всегда сталкивается с ветром, а турбина Дарье представляет собой цилиндр перпендикулярный воздушному потоку. Таким образом, часть турбины работает, а другая часть просто крутиться по кругу.

Лопасти позволяют турбине достигать скоростей, которые выше, чем фактическая скорость ветра, что делает их подходящими для выработки электроэнергии, а не для откачки воды, например. Турбина Дарье может работать при скорости ветра до 220 км/ч и при любом его направлении.

Основной недостаток турбины Дарье — невозможность самостоятельного включения. Для пуска турбины требуется внешний привод (например, небольшой двигатель или набор маленьких турбин Савониуса). При достаточной скорости вращения, ветер создает достаточный крутящий момент, и ротор начинает вращаться вокруг оси с помощью ветра.

Тип турбины Дарье теоретически так же эффективен, как и пропеллерный тип, если скорость ветра постоянная, но на практике эта эффективность редко реализуется из-за возникающих физических напряжений, конструкционных особенностей и изменяемости скорости ветра.

Особым типом турбины Дарье является «Тип Н» (или «Gyromill»). Для получения энергии ветра он работает по тому же принципу, что и ветряная турбина Дарье, но вместо изогнутых лопастей применяются 2 или 3 прямые лопасти, индивидуально прикрепленные к вертикальной оси.

ВВТ Савониуса

Турбина Савониуса является простым видом турбины, который был придуман в его современном виде финским инженером Сигурдом Джоханесом Савониусом в 1922 году. Она обычно применяется в случаях, требующих высокой надежности, а не высокой эффективности (например, в вентиляции, в анемометрах, во внутреннем микропроизводстве).

Турбины Савониуса гораздо менее эффективны, чем ПВТ и ВВТ Дарье (около 15%, см. ниже «Расчет энергии ветра»), но в отличие от первых, они хорошо работают при турбулентном ветре и, в отличие от последних, они самостоятельно включаются. В структурном плане они являются устойчивыми, могут хорошо противостоять сильным ветрам и остаются без повреждений и работают тише по сравнению с другими типами.

В отличие от турбины Дарье, которая работает под действием силы «подъема», турбина Савониуса работает за по принципу «аэродинамического сопротивления». Она состоит из 2–3 «ковшей»: изогнутые элементы испытывают меньшее сопротивление при движении против ветра, чем при движении по ветру из-за изогнутой формы ковшей. С точки зрения аэродинамики именно это дифференциальное сопротивление заставляет турбину Савониуса вращаться.

Таблица: Дарье или Савониус

Расчет энергии ветра

Мощность энергии ветра (P в ваттах) при известной скорости ветра рассчитывается по следующей формуле:

P = ½ x «плотность воздуха» x «площадь охвата» x («скорость ветра»)3

Над уровнем моря «плотность воздуха» составляет примерно 1,2 кг/м3, «скорость ветра» является скоростью ветра (м/сек) и «площадь охвата» относится к площади пространства, покрываемая ротором ветровой турбины. Она может быть рассчитана исходя из длины лопасти турбины:

A = π x («длина лопасти»)2

Однако, как только важные технические требования к ветровым турбинам принимаются во внимание (например, прочность и износостойкость, передаточное число редуктора, требования к подшипникам, генератору), предел количества энергии, которая может быть получено за счет энергии ветра уменьшается до 10–30% от фактической энергии ветра. Этот предел называется «коэффициент мощности», который является уникальным для каждого вида ветровой турбины. Для расчета количества извлекаемой энергии этот коэффициент мощности («Cp») должен быть введен в приведенную выше формулу:

доступная = ½ x «плотность воздуха» x «площадь охвата» x («скорость ветра»)3x Cp

Коэффициент мощности Cp зависит от типа ветровой турбины, и изменяется от 0,05 до 0,45.

Обжитая часть России бедна ветровыми ресурсами. Средняя скорость ветра в 4—5 м в секунду характерна для большинства промышленных районов. Малая скорость ветра означает малую мощность ветрового потока. И, кроме того, значительное количество безветре- ных дней. ВЭУ в России в основном будут работать треть или половину времени.

Ветрообильные районы — это прибрежные территории, расположенные вдоль морей и крупных озер. Побережье Северного Ледовитого океана, побережье Тихого океана имеют хороший ветровой потенциал, но они мало обжиты, и поэтому создание ветроустановок, ветропарков представляет там сложности.

К районам, благоприятным для размещения ветряков, можно, отнести несколько километров побережья в Ленинградской области вокруг Финского залива и Ладожского озера. Морское побережье Ростовской области и Краснодарского края. Приморский край (район Владивостока). Перспективны ветрозапасы в Мурманской и Архангельской областях, но там более суровые условия для исполнения проектов ветропарков. Средняя скорость ветра в некоторых городах сведена в таблицу. 1.1.

Ветроустановка хорошо работает только в связке с электросетью. Возможно, в будущем удастся довести до практического и дешевого использования водородную энергетику, что позволит безболезненно запасать энергию, произведенной ветроустановкой. Пока же ветроустановки привязаны к линии электропередач.

Самый важный фактор, который влияет на количество энергии, вырабатываемой ветрогенератором – скорость ветра.

Причем, количество электроэнергии, выработанной ветроэлектроустановкой, возрастает кубически с увеличением скорости ветра. Т. е. если скорость ветра удваивается, кинетическая энергия, полученная ротором, увеличивается в восемь раз.

В таблице 1 представлены значения энергии ветра в стандартных условиях (сухой воздух, плотность — 1,225 кг/м3 , атмосферное давление 760 мм рт. столба). Таблица 1.1 - Значения энергии ветра в стандартных условиях

Результаты исследования ветроэнергетических ресурсов в России носят противоречивый характер. Так, по зарубежным данным территория нашей страны (за исключением Крайнего Севера и Дальнего Востока) малопригодна для использования энергии ветра, а по отечественным данным на территории России для ветроэнергетики пригодно около 8 млн. км2 площади. Причем по 11 отечественным данным, только на 1 % этой площади можно построить ветроэлектростанции общей мощностью 300 - 500 тыс. МВт.

Необходимо отметить, что ветер не постоянен в течение года и суток, и более объективно ветроэнергетические ресурсы оценивать по возможной выработке энергии за год, а не по мощности. Такую оценку легко провести по многолетним данным метеостанций.

Литература:

Беззубцева М.М., Волков В.С. , Пиркин А.Г., Фокин С.А. Энергетика технологических процессов – учебное пособие, 2011. – СПб.: СПбГАУ, 265 с.

URL: http://geoenergetics.ru/, (дата обращения 28.12.2020)

Просмотров работы: 640