КОНЦЕНТРАТОРЫ И СИСТЕМЫ СЛЕЖЕНИЯ - Студенческий научный форум

XIII Международная студенческая научная конференция Студенческий научный форум - 2021

КОНЦЕНТРАТОРЫ И СИСТЕМЫ СЛЕЖЕНИЯ

Ахатов Х.Х. 1
1ФГБОУ ВО «Санкт-Петербургский государственный аграрный университет», факультет технических систем, сервиса и энергетики
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Для повышения эффективности использования энергии солнечного излучения в солнечных электростанциях применяются концентраторы и системы слежения за Солнцем, представляющие периферийные устройства.

Тепловые солнечные электростанции вообще не могут работать без концентраторов солнечного излучения и систем слежения за Солнцем, а в солнечных электростанциях на фотоэлектрических преобразователях применение концентрированного солнечного излучения позволяет увеличить коэффициент использования энергии с 12 – 14% до 15 – 18% в коммерческих энергоустановках. В лабораторных энергоустановках на фотоэлектрических преобразователях этот показатель уже в настоящее время превышает 20% /4/.

Системы слежения обеспечивают повышение коэффициента использования энергии солнечного излучения в 1,3 раза в зимние месяцы и в 1,8 раза в летний сезон.

Точные системы слежения требуются и при использовании простейших концентраторов в солнечных электростанциях на фотоэлектрических преобразователях, так как такие концентраторы утрачивают эффективность при рассогласовании угла наведения на Солнце более 1 – 2 градусов. Альтернативным вариантом в электростанциях на фотоэлектрических преобразователях являются концентраторы второго порядка, представляющие собой поверхности вращения парабол.

Концентраторы второго порядка (параболические фоконы или фоклины) позволяют собирать лучи, попадающие во входную зону под углом до 45 градусов и более. Это, во-первых, позволяет использовать не только прямое, но и часть рассеянного солнечного излучения, а во-вторых, угол наведения при суточном ходе Солнца можно изменять только два раза в сутки. Такие системы слежения могут работать в функции времени и являются более простыми и более дешевыми.

Виды конструкции

Задача концентраторов – собрать с большой площади тепловые инфракрасные лучи и направить их в одну точку для передачи энергии носителям. Приемные коллекторы нагреваются до +350–700°С, рабочая температура поддерживается в пределах +600°С, что объясняется физическими свойствами применяемых теплоносителей. Какие схемы применяются при создании солнечных концентраторов?

*Параболическая

Агрегаты состоят из лотков параболической формы, лучи фокусируются на установленных металлических трубках черного цвета. Для уменьшения потерь они закрываются стеклянной трубкой – потери минимизируются за счет исключения конвекции воздушных потоков. Тепло солнца передается теплоносителю (солевой расплав из 60% натриевой и 40% калийной селитры), небольшие станции используют простые растворы. Надо знать, что чем ниже плотность жидкости, тем меньше она накапливает энергии, а это уменьшает и так слабый коэффициент полезного действия оборудования.

Установки оснащаются одноосными или двуосными системами слежения за положением солнца, в редких случаях делаются стационарными. Именно такой солнечный концентратор своими руками можно сделать на приусадебном участке, место солевых растворов использовать обыкновенную воду. Недостаток – низкая эффективность повышает стоимость произведенной энергии. Преимущества: сглаживают пиковые нагрузки гибридной системы, на сегодняшний день выработано 4500 ГВт/ч, накоплен большой практический опыт работы установок. У параболических антенн самый простой механизм слежения.

*Тарельчатая

Внешним видом и принципом действия напоминает спутниковую антенну, только последняя концентрирует электромагнитные волны кроткого диапазона, а первая тепловые инфракрасные электромагнитные волны. Приемники энергии устанавливаются в фокусе каждой антенны, теплоноситель может нагреваться до +1000°С. Электрическая энергия вырабатывается компактными генераторами непосредственно в антенне. Такие станции применяются как для автономного питания небольших потребителей, так и для подключения к существующим электрическим сетям (в гибридном режиме). Диметр зеркал достигает 7 м, мощность ≈ 25 кВт, КПД до 29%. Недостатки: по многим техническим параметрам не отвечают требованиям потребителей, большой популярностью не пользуются. Достоинства: может регулировать пики нагрузок в сети, имеет высокие параметры преобразования, модульность, работают в гибридных системах.

*Башенная

Лучи фокусируются на удаленной башне с теплоприемником, система автоматического слежения за положением солнца обеспечивает постоянную концентрацию лучей в одной точке. Нагретая жидкость подается на генератор или закачивается в хранилище, тепловая энергия из него используется ночью или в облачную погоду. Упрощенный башенный солнечный концентратор для отопления может использоваться для обогрева зданий и сооружений, в том числе и частных домов. Температура жидкости в башне превышает +1000°С, тепло используется для производства электрической энергии, в технических целях или для систем отопления.

Литература

Беззубцева М.М., Волков В.С. Нетрадиционная и возобновляемая энергетика: конспект лекций для обучающихся по направлению подготовки 35.04.06 «Агроинженерия», профиль «Энергетический менеджмент и инжиниринг энергосистем». — СПб.: СПбГАУ, 2016. — 127 с.

Татьяна АББАСОВА Система наведения   концентратора на солнце // Наука и техника . 2012. №03.

СТРЕБКОВ ДМИТРИЙ СЕМЕНОВИЧ1, ТВЕРЬЯНОВИЧ ЭДУАРД ВЛАДИМИРОВИЧ СОЛНЕЧНЫЕ ЭЛЕКТРОСТАНЦИИ: КОНЦЕНТРАТОРЫ СОЛНЕЧНОГО ИЗЛУЧЕНИЯ. М: РГАУ — МСХА им. К.А. Тимирязева, 2019.

Просмотров работы: 71