ДИСПЕРСИЯ СВЕТА И ОСНОВЫ ТЕХНОЛОГИИ КАНАЛОВ ПЕРЕДАЧИ - Студенческий научный форум

XIII Международная студенческая научная конференция Студенческий научный форум - 2021

ДИСПЕРСИЯ СВЕТА И ОСНОВЫ ТЕХНОЛОГИИ КАНАЛОВ ПЕРЕДАЧИ

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Рассматривается физический эффект дисперсии света, его классификация, разновидности видов дисперсии. Описаны основные положения теории дисперсии, особенности аномальной дисперсии света. Обсуждаются основы технологии каналов передачи, виды дисперсии (модовая, материальная, волноводная). Рассмотрены методы компенсации дисперсии и вопросы выбора волокна для эффективной компенсации дисперсии. Рассматриваются два подхода в стремлении уменьшить накопление дисперсии на отрезке волокна (использование волокна с малой дисперсией,волокна с нулевой дисперсией, или волокна с минимально-возможным наклоном кривой дисперсии в рабочем окне, или на использовании чередующихся участков с положительной и отрицательной дисперсией).

Ключевые слова: дисперсия света, методы компенсации, каналы передачи

The physical effect of light dispersion, its classification, varieties of dispersion types are considered. The main provisions of the theory of dispersion, features of anomalous dispersion of light are described. The basics of transmission channel technology, types of dispersion (mode, material, waveguide) are discussed. Dispersion compensation methods and fiber selection issues for effective dispersion compensation are considered. Two approaches are considered in an effort to reduce the accumulation of dispersion on a length of fiber (using low dispersion fiber, zero dispersion fiber, or fiber with the lowest possible dispersion slope in the working window, or using alternating sections with positive and negative dispersion).

Keywords: light dispersion, compensation methods, transmission channels

Введение

Солнце проходит через прозрачные или условно прозрачные вещества, такие как вода, стекло, хрусталь. При этом белый луч, который мы называем бесцветным, раскладывается на составляющие его радужные цвета, соответствующие волнам разной длины волны [1]. Еще задолго до того, как явление разложение спектра было описано и объяснено с точки зрения современной физики и представлений о волновой природе облучения, люди наблюдали и пытались понять суть этого явления.

Древнегреческий ученый Аристотель еще в 3 веке до н.э. активно изучал и пытался дать объяснение некоторым свойствам светового потока. Он наблюдал дисперсию света в природе и даже пытался экспериментально выяснить, как устроено солнечное излучение
Так он выяснил, что солнечные лучи могут иметь разный цвет. И попытался описать суть этого явления. Ученый объяснил это тем, что разный оттенок свет приобретает из-за разного «количества темноты» в нем. Если темноты много, тогда освещение становится фиолетовым, если мало, то красным. Уже тогда ученый сделал предположение, что белый спектр является основным и состоит из множества оттенков.

Где встречается дисперсия

Разложение волнового потока в природе мы наблюдаем часто, но порой даже не догадываемся, что это дисперсия.

Солнце на заходе, окрашивает все в красный или оранжевый цвет. Это происходит из-за разложения освещения в среде газа, который составляет нашу атмосферу.

На дне аквариума или водоема с достаточно прозрачной водой мы можем видеть радужные блики. Это солнечный диапазон, преломленный в воде, раскладывается на цветовой спектр.

Бриллианты, огранённый хрусталь, фиониты переливаются всеми гранями при ярком освещении.

Открытие явления дисперсии. Опыты Ньютона

Конечно, первым, кто экспериментально доказал и описал зависимость преломления светового потока от длины волны, был Исаак Ньютон [2]. С 1666 года он активно занимался изучением явления преобразования бесцветного диапазона. В солнечный день ученый затемнил комнату и оставил только небольшой просвет в окне, через который проходила тонкая полоска солнца. Ньютон поставил треугольную хрустальную призму, чтобы на нее попадал луч. Пройдя через прозрачный хрусталь, белый свет превратился в ряд разноцветных полос.

Далее Исаак Ньютон выполнил целый комплекс оптических экспериментов с призмами, подробно описав их в «Оптике», «Новой теории света и цветов», а также в «Лекциях по оптике». Ньютон убедительно доказал ложность представлений о возникновении цветов из смешения темноты и белого света. На основании про­деланных опытов он смог заявить: «Никакого цвета не возникает из белизны и черноты, смешанных вме­сте, кроме промежуточных темных; количество света не меняет вида цвета». Ньютон показал, что белый свет не является основным, его надо рассматривать как составной (по Ньютону, «неоднородный»; по со­временной терминологии, «немонохроматический»); основными же являются различные цвета («однород­ные» лучи или, иначе, «монохроматические» лучи). Возникновение цветов в опытах с призмами есть ре­зультат разложения составного (белого) света на основные составляющие (на различные цвета). Это разложение происходит по той причине, что каждому цвету соответствует своя степень преломляемости. Таковы основные выводы, сделанные Ньютоном; они прекрасно согласуются с современными научными представлениями.

Приступая к оптическим исследованиям, Ньютон ставил перед собой задачу «не объяснять свойства света гипотезами, но изложить и доказать их рассуж­дениями и опытами». Проверяя то или иное положе­ние, ученый обычно придумывал и ставил несколько различных опытов. Он подчеркивал, что необходимо использовать разные способы «проверить то же са­мое, ибо испытующему обилие не мешает».

Основные положения теории дисперсии света

Белый поток превращается в разноцветный, так как он не монохромный, а как раз содержит в себе весь цветовой ряд. Когда диапазоны всех цветов сливаются, мы видим белое излучение. При этом каждый цвет имеет разную длину волны. И в зависимости от нее по-своему меняет угол преломления.

Например, для зеленого диапазона угол отклонения будет больше, чем для оранжевого, а для синего больше, чем для зеленого. При этом скорость распространения изменяется при прохождении через другую среду, а вот частота остается прежней.

Дисперсия — это зависимость показателя?преломления от длины?волны, или зависимость?скорости света в веществе от длины волны. Это определение можно представить в виде формулы:  n = f(ν) или n = f(λ), где n — показатель преломления, λ — длина, а ν — частота [3].

Сущностью явления дисперсии  является неодинаковая скорость распространения лучей света с различной длиной волны в прозрачном веществе – оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно чем больше частота волны, тем больше показатель преломления среды и меньше ее скорость света в ней: такая зависимость n(ν) называется нормальной дисперсией света.

В связи с тем, что, согласно квантовым  представлениям, каждой волне соответствует некоторая  частица  или  квазичастица и наоборот, закон дисперсии можно также записывать и для частиц. В частности, в  физике твёрдого тела закон дисперсии  выражает связь между  энергией частицы (например, электрона, фонона) и его  волновым вектором [3].

Дисперсией объясняется  факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).

Дисперсия является причиной хроматических аберраций – одних из аберраций оптических систем, в том числе фотографических и видео-объективов. Хроматические аберрации заключаются в паразитной дисперсии света, проходящего через оптическую систему (фотографический объектив, бинокль, микроскоп, телескоп и т.д.). При этом белый свет разлагается на составляющие его цветные лучи, в результате чего изображения предмета в разных цветах не совпадают в пространстве изображений. Кроме этого, к хроматическим аберрациям можно отнести хроматические разности геометрических аберраций.

Хроматические аберрации  ведут к снижению чёткости изображения, а иногда также и к появлению на нём цветных контуров, полос, пятен, которые у предмета отсутствуют.

Открытие аномальной дисперсии света. Опыты Кундта.

До второй половины XIX века считали, что этот вывод справедлив всегда. Но вот в 1860 г. фран­цузский физик Леру, проводя измерения показателя преломления для ряда веществ, неожиданно обна­ружил, что пары йода преломляют синие лучи в мень­шей степени, нежели красные. Леру назвал обнару­женное им явление аномальной дисперсией света. Если при обычной (нормальной) дисперсии показа­тель преломления с ростом длины волны умень­шается, то при аномальной (необычной) дисперсии показатель преломления, наоборот, увеличивается. Явление аномальной дисперсии было детально иссле­довано немецким физиком Кундтом в 1871—1872 гг. При этом Кундт воспользовался методом скрещенных призм, который был предложен в свое время Ньюто­ном [3].

На рис.1 а воспроизведена уже знакомая картина: при прохождении через две скре­щенные стеклянные призмы свет дает на экране на­клоненную полоску спектра. Теперь предположим, что одна из стеклянных призм заменена полой призмати­ческой кюветой, заполненной раствором органиче­ского соединения, называемого цианином; именно та­кую призму использовал Кундт в одном из своих опытов.

Рис. 1. Схема опыта Кундта (1 — стеклянная призма,

2 — призма, заполненная раствором цианина)

Стеклянная призма дает нормальную дисперсию. Так как ее преломляю­щее ребро ориентировано вниз, то ось длин волн для пучка лучей, выходящих из данной призмы, также направлена вниз (ось l на экране). Вдоль перпенди­кулярного направления на экране (вдоль оси n) откладываются значения показателя преломления ве­щества, заполняющего вторую призму. На экране на­блюдается весьма специфическая картина спектра, ка­чественно отличающаяся от той, какую наблюдал в своих опытах Ньютон. Видно, что n(λ 1 )< n(λ 2 ), хотя λ 1 < λ 2 . Заслуга Кундта заключается не только в том, что он убедительно продемонстрировал явление аномальной дисперсии, но и в том, что он указал на связь этого явления с поглощением света в веществе. Указанная на рисунке длина волны λ о есть длина волны, вблизи которой наблюдается сильное погло­щение света в растворе цианина.

Последующие исследования аномальной дисперсии света показали, что наиболее интересные экспе­риментальные результаты получаются, когда вместо двух скрещенных призм используется, например, призма и интерферометр. Такая эксперименталь­ная методика была применена известным русским физиком Д. С. Рождественским в начале XX в. (рис.2), воспроизведенный с фотографии, полученной Д. С. Рождественским, демонстрирует явление ано­мальной дисперсии в парах натрия. Внеся в используемую методику существенные усовершенствования, ученый разработал так называемый «метод крюков», широко применяемый в современной экспериментальной оптике [4].

Рис.2. Ано­мальная дисперсия в парах натрия

Согласно современным представлениям и нор­мальная, и аномальная дисперсии рассматриваются как явления единой природы, описываемые в рамках единой теории. Эта теория основывается на электромагнитнойтеории света, с одной стороны, и на

элект­ронной теории вещества, — с другой. Строго говоря, термин «аномальная дисперсия» сохраняет сегодня лишь исторический смысл. С сегодняшних позиций, нормальная дисперсия — это дисперсия вдали от длин волн, при которых происхо­дит поглощениесвета данным веществом, тогда как аномальная дисперсия — это дисперсия в области по­лос поглощения света веществом.

Основы технологии каналов передачи дисперсии

Виды дисперсии для передачи

Различают три вида дисперсии [5]

- модовая дисперсия - дисперсия, существующая только в многомодовом волокне и вызванная различной скоростью распространения в световоде лучей разных мод, достигающих определенного сечения ОВ (выхода) в разное время, что приводит к уширению входного импульса на выходе;

- материальная дисперсия - дисперсия собственно материала световода, существующая независимо от типа волокна и отличающаяся от хроматической дисперсии только тем, что она соответствует волноводной (а не объемной) среде;

- волноводная дисперсия - дисперсия, существующая в так называемой волноводной cpeде, сформированной по меньшей мере двумя физическими средами (в нашем случае сердцевиной и оболочкой).

Модовая дисперсия.

Этот тип дисперсии может быть уменьшен двумя путями:

-уменьшением диаметра сердцевины dc;

-изменением профиля показателя преломления, т.е. использованием многомодового волокна с плавно изменяемым показателем преломления. В настоящее время многомодовые волокна такого типа используются достаточно широко.

Материальная дисперсия.

Материальная дисперсии, или дисперсия материала, зависит (для прозрачного материала) от частоты ω (или длины волны λ) и материала ОВ, в качестве которого, как правило, используется кварцевое стекло. Дисперсия определяется электромагнитным взаимодействием волны со связанными электронами материала среды, которое носит, как правило, нелинейный (резонансный) характер и только вдали от резонансов может быть описано с приемлемой точностью, например уравнением Селлмейера :

n2 (ω)= 1+∑Rj ω2 j (ω2 j – ω2 ), (3.1)

где ωj - резонансные частоты, Rj - величина j-го резонанса, а суммирование по j для объемного кварцевого стекла ведется по первым трем резонансам.

Возникновение дисперсии в материале световода даже для одномодовых волокон обусловлено тем, что оптический источник, возбуждающий вход (светоизлучающий диод - СИД или лазерный диод - ЛД), формирует световые импульсы, имеющие непрерывный волновой спектр определенной ширины (например, для СИД это примерно 35-60 нм, для многомодовых ЛД - 2-5 нм, для одномодовых ЛД - 0,01-0,02 нм). Различные спектральные компоненты импульса распространяются с разными скоростями и приходят в определенную точку (фазу формирования огибающей импульса) в разное время, приводя к уширению импульса на выходе и, при определенных условиях, к искажению его формы.

Для описания дисперсии в световоде используется разложение постоянной распространения моды в ряд Тейлора в окрестности несущей частоты ω 0 . Линейный член этого разложения, характеризует групповую скорость движения огибающей импульса v=с/n(здесь n - групповой показатель преломления), а квадратичный член характеризует собственно дисперсию групповых скоростей в волокне. Она и определяет уширение импульса. Интересно отметить, что в диапазоне длин волн 1500-1600 нм n2 почти линейно уменьшается, принимая нулевое значение на длине волны примерно 1270 нм. Эта длина волны λ называется длиной волны нулевой дисперсии для объемной среды. Для оптоволокна эта длина волны сдвигается до значения порядка 1312 нм (см. ниже), чем и объясняется использование источников излучения 1310 нм для одномодового ОВ. Для одномодового кварцевого волокна n2 положительна для λ<1312 нм и отрицательна для λ>1312 нм, а в окрестности λ=1312 нм она нулевая.

Из описанного ясно, что для уменьшения материальной дисперсии нужно, с одной стороны, переходить при выборе источников от оптических источников b а или выборе волокна. С другой стороны, необходимо переходить от источников с длинами волн порядка 850 нм к длинам волн порядка 1310 нм для использования эффекта нулевой дисперсии. Эти естественные "теоретические" соображения, не могут, однако, служить в качестве однозначной практической рекомендации. Так для волоконных линий может оказаться более предпочтительным использовать СИД на длине волны 850 нм.

Волноводная дисперсия.

Дисперсия реальных световодов отличается от дисперсии объемной среды наличием волноводной структуры, изменяющей эффективный показатель преломления моды. В результате появляется особая волноводная составляющая дисперсии, которая складывается определенным образом с дисперсией материала, формируя результирующую дисперсию. Вклад волноводной дисперсии зависит от радиуса сердцевины, разности показателей преломления сердцевины и оболочки и числа оболочек. Для описания дисперсии в световоде с учетом ее волноводной составляющей вместо параметра n2 используется дисперсионный параметр D.

В избежание путаницы, возникающей при чтении различных публикаций, нужно помнить, что для оптических волокон в справочниках в качестве дисперсионной характеристики приводят зависимость от λ именно этого параметра D . Поэтому и наклон зависимости дисперсионного параметра D от λ, называемый часто наклоном ненулевой дисперсии, будет положительным (а не отрицательным). А фразы в публикациях "в области положительных (или отрицательных) дисперсий" могут на самом деле иметь обратный смысл, так как дисперсия, по определению, положительна при положительном n2 (т.е. отрицательном, а не положительном, D). Эти фразы правильны, если иметь в виду, что под дисперсией фактически понимается дисперсионный параметр D.

Действие волноводной составляющей дисперсии сдвигает длину волны нулевой дисперсии до величины λ0 -1312 нм. Этот факт используется при выборе длины волны источника (1310 нм) для работы с одномодовыми ОВ. Используя несколько слоев оболочки (и тем самым изменяя параметры волноводного тракта), можно сдвинуть длину волны нулевой дисперсии в диапазон 1500-1600 нм. Для этого оказалось достаточным использовать две оболочки - этот тип оптоволокна получил название - оптоволокна со сдвигом дисперсии (DSF). Используя многослойную оболочку (4 слоя), можно добиться почти плоской и близкой к нулевой дисперсионной характеристики (D≤ 1-6) в диапазоне длин волн от 1300 до 1650 нм. Этот тип оптоволокна получил название – волокно с ненулевой смещенной дисперсией, который может с успехом использоваться в синхронных оптических системах с мультиплексированием по длинам волн

Методы компенсации дисперсии

Методы уменьшения дисперсии, рассмотренные выше, сводились к использованию профилированных показателей преломления, длины волны с нулевой дисперсией, сдвигу нулевой дисперсии за счет волноводной составляющей в область рабочих длин волн, созданию слабо меняющейся дисперсионной характеристики с ненулевой, но малой дисперсией. Они уже реализованы в существующих оптических волокнах.

Однако существует возможность и прямой компенсации дисперсии путем врезки в волокно, имеющее положительную дисперсию, участка ОВ с отрицательной дисперсией, причем так, чтобы результирующая дисперсия на заданной длине волны или (с учетом использования WDM) в определенном диапазоне длин волн была близка к нулю. Использование этого метода возможно упростит технологию изготовления кабеля и кажется достаточно перспективным.

Одной из промышленных разработок, основанных на такой технологии изготовления оптического волокна, является новая модификация кабеля TrueWave, названная TrueWaveBalanced. Этот кабель позволяет без использования внешних компенсаторов передавать сигналы высокоскоростных систем WDM (DWDM и HDWDM ) в стандартном для них в настоящее время диапазоне длин волн 1530-1565.

Кроме указанных спецтехнологий , для этих же целей был разработан специальный тип оптического волокна DCF – волокно компенсирующее дисперсию (ВКД), которое в виде бухты ОВ определенной длины может быть вставлено в виде модуля в стойку с аппаратурой SDH или WDM. Важно иметь в виду большой уровень вносимых потерь, который имеет такой модуль.

Выбор волокна для компенсации дисперсии

Как уже отмечалось, согласно статистике, наибольший процент уложенного кабеля содержит стандартное ОМ волокно, имеющее большую величину хроматической дисперсии, на длине волны 1550 нм. Если планируется увеличить длину перекрытия или секции, ограниченную допустимой величиной накопленной дисперсии, или необходимо уменьшить дисперсию в связи с переходом со скорости передачи 2,5 Гбит/с на 10 Гбит/с, или планируется использование систем WDM, или же, наконец, оказывается необходимым установить солитонные генераторы для повышения надежности работы вашей линии связи (а для нормальной работы таких генераторов требуется, как известно, отрицательная средняя (накопленная на длине секции) дисперсия - можно использовать специальное волокно для компенсации дисперсии - ВКД (DCF). Это волокно производится рядом компаний, например, Corning, LucentTechnologies, SumitomoElectric.

Волокно укладывается (в виде бухты) в специальные модули - модули компенсации дисперсии - МКД (DCM), выпускаемые как в виде отдельно используемых модулей, оснащенных оконцованными коннекторами монтажными шнурами (типа - pigtail), так и в виде модулей, монтируемых в стойках. Размер модулей могут быть разными/

В табл. 1 приведены доступные типы и параметры такого модуля (волокна), выпускаемой компаниями Corning. Приведенные параметры соответствуют длине волны 1545-1550 нм, а среднее значение PMD измерено в диапазоне длин волн 1500 - 1565 нм. В этой таблице фактически вместо дисперсии используется дисперсионный параметр D. Под "эффективностью модуля" понимается отношение дисперсии модуля к вносимому затуханию.

Таблица 1. Параметры модулей компенсации дисперсии.

Компания

Corning

Тип модуля

DCM-95

DCM-110

Компенсируемая длина линии, км

95

110

Дисперсия волокна модуля, пс/нм/км

-1564±15

1756±15

Вносимое затухание, дБ

>10

>10

Эффективность модуля, пс/нм/дБ

156,4

175,6

Среднее значение PMD, пс

>1.6

<1.7

В практике использования волокна существуют два подхода в стремлении уменьшить накопленную дисперсию на длине секции. Один базируется на использовании волокна с малой дисперсией (волокна с нулевой дисперсией, если речь идет об использовании одной несущей, или волокна NZDSF с минимально-возможным наклоном кривой дисперсии в рабочем окне, если речь идет об использовании нескольких несущих в системах с WDM), другое - на использовании чередующихся участков с положительной и отрицательной дисперсией (параметром D). Второй подход (в силу неоднородности используемого волокна в сети и вытекающих из этого сложностей в случае ремонта) подвергался критике. Однако он был дешевле. С появлением промышленных МКД, а также учитывая, что установка МКД носит не "распределенный" (как для ВОК), а "сосредоточенный" характер (модуль устанавливается в стойку, или на полку (в шасси) ОУ между первым и вторым каскадам» усиления, сложности "с ремонтом" исчезли. В результате все более широкое применение находит связка: волокно SSF+DCM (стандартное волокно + МКД). У такого решения два недостатка (как это из таблицы 2.4); дополнительные вносимые потери, которые должны быть учтены при подсчете накопленного затухания, и увеличение суммарного PMD, которое должно быть учтено для высокоскоростных систем (10 Гб/с на несущую и выше) при подсчете накопленного PMD.

В любом случае при использовании МДК необходимо проводить проверочные расчеты не только накопленного затухания с учетом вносимых потерь, но и накопленного значения PMD, особенно для высокоскоростных систем

 Список литературы

1. Тарасов Л.В., Тарасова А.Н. «Беседы о преломлении света» /под ред. В.А. Фабриканта, изд. «Наука», 1982.
2. Гершензон Е.М., Малов Н.Н., Мансуров А.Н. «Курс общей физики» М. «Просвещение», 1992.
3. Яворский Б.М. ,Пинский А.А. Основы  физики: Учебник. Колебания и волны. Квантовая физика. Физика ядра и элементарных частиц. М.: Физматлит, 2009. – 551 с.

4. Дмитриев С.А., Слепов Н.Н. Волоконно – оптическая техника: достижения, перспективы. М.: Издательство Connect, 2000.

5. Макаров Е. Ф. Физика для химико-технологических специальностей / Е.Ф. Макаров, Р.П. Озеров. 2008.

 

Просмотров работы: 220