МОЖЕТ ЛИ ЗВУК ПЕРЕДАВАТЬСЯ ЧЕРЕЗ ВАКУУМ? - Студенческий научный форум

XIII Международная студенческая научная конференция Студенческий научный форум - 2021

МОЖЕТ ЛИ ЗВУК ПЕРЕДАВАТЬСЯ ЧЕРЕЗ ВАКУУМ?

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение.

Люди давно начали изучать мир вокруг себя, но он все также остаётся неизведанным. Мы можем лишь предполагать, сколько всего неизведанного лежит под завесой тайны мира. Но, тем не менее, ученые постоянно пытаются найти, открыть не известные нам свойства.

В открытом космосе акустических волн нет, поскольку нет среды, необходимой для их распространения. Впечатляющий грохот взрывающихся во время битвы космических кораблей не более, чем фантазия режиссера возможно не знающего основ физики космоса. Ведь всем известно, что в вакууме звук не распространяется, и галактические баталии, если они, когда-нибудь начнутся, будут для стороннего наблюдателя совершенно бесшумны. Однако в некоторых особых случаях, как оказалось, звук может перемещаться между объектами в вакууме: от объекта к объекту.

Что такое звук?

Звук — физическое явление, представляющее собой распространение в виде упругих волн механических колебаний в твёрдой, жидкой или газообразной среде. Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением сбалансированного состояния системы и выражается в отклонении её характеристик от равновесных значений с последующим возвращением к исходному значению. Звуковые волны - это колебания атомов какой-либо среды [1,2]. Если частота таких колебаний, ниже или выше акустического диапазона, воспринимаемого человеком, они называются  инфразвуком или ультразвуком соответственно. Физически они идентичны звуку, поэтому нижеследующее справедливо и для них. 

Звуковая волна, звуковое поле и акустический сигнал – понятия, тождественные звуку, хотя применяются в разном контексте. Но следует различать звук как физическое явление и слуховые ощущения – как явление психическое. Фронт волны – это поверхность, образованная точками среды, находящимися в одной фазе колебания.

Фонон

Фонон является коллективным возбуждением в периодическом, упругом расположении атомов или молекул в конденсированных средах, в частности, в твердых телах и некоторые жидкостях. Часто назначена квазичастица, это возбужденное состояние в квантовом - механическом квантовании из мод колебаний упругих структур взаимодействующих частиц. Фононы можно рассматривать как квантованные звуковые волны, аналогичные фотонам как квантованные световые волны. Если размеры источника звука меньше длины излучаемой им волны и расстояние до приёмника невелико, фронт звуковой волны можно считать сферическим. Если же размеры излучателя значительно больше длины волны или расстояние до приёмника значительно – фронт звуковой волны можно считать плоским. Понятие сферических волн применимо в основном для низких частот на малых расстояниях от источника – вдали их можно считать плоскими из-за большого радиуса кривизны. Плотность энергии сферической волны снижается при расхождении – до приёмника доходит лишь незначительная часть излучённой энергии. Излучатель, сильно вытянутый в одном направлении, на низких частотах создаёт цилиндрические волны. Звуковое давление снижается с увеличением расстояния до источника звука вследствие трения, причём высокочастотные волны теряют энергию быстрее низкочастотных волн с плоским фронтом излучения, производя больше трения.

Вакуум

Вакуум (от лат. vacuus — пустота) — пространство, свободное от вещества. В технике и прикладной физике под вакуумом понимают среду, состоящую из газа при давлении  значительно ниже атмосферного.

Практическое применение

Передать звуковые колебания в космосе невозможно? Экипаж МКС свободно общается с Землей по радиосвязи, а еще более простой и очень эффектный метод передачи звука в космосе обнаружил недавно физик из Финляндии Мика Прунила (Mika Prunnila) с коллегами. Звук никак не может распространяться в вакууме, так как нет колебательной среды. Однако звуковые колебания могут перескакивать из одного тела в другое через вакуумный зазор субмикронной толщины. Этот эффект, получил название «вакуумное туннелирование фононов».

«Вакуумное туннелирование фононов»

Этот эффект был описан сразу в двух статьях, опубликованных в выпусках журнала Physical Review Letters [3,4]. Сразу же отметим, что, поскольку колебания кристаллической решетки переносят не только звук, но и тепло, новый эффект приводит также к аномально сильной теплопередаче через вакуум. Новый эффект работает за счет взаимодействия между звуковыми волнами в кристалле и электрическим полем. Колебания кристаллической решетки, доходя до окончания одного кристалла, создают вблизи его поверхности переменные электрические поля. Эти поля «чувствуются» на другом край вакуумного зазора и раскачивают колебания решетки во втором кристалле.

Рис.1. Переход электромагнитных волн из одного тела в другое,

порождая звуковые волны в нем

В целом это выглядит так, словно отдельный фонон — «квант» колебания кристаллической решетки — перескакивает из одного кристалла в другой сквозь вакуум и распространяется в нём дальше, хотя в пространстве между кристаллами никакого фонона, конечно, нет. Авторы этого открытия использовали для характеризации приема слово «туннелирование», поскольку он очень похож на туннелирование квантовых частиц, когда они перебегают через энергетически запрещенные области. Однако стоит подчеркнуть, что новое явление можно описать на языке классической физики и вовсе не требует вмешательства квантовой механики. Оно в чём-то схоже с явлением электромагнитной индукции, которое используется в трансформаторах, индукционных электроплитках и устройствах бесконтактной зарядки гаджетов. И там и тут некоторый процесс в одном теле порождает электромагнитные поля, которые безызлучательно (то есть без потери мощности на излучение) передаются через зазор во второе тело и вызывают в нём отклик. Разница лишь в том, что при обычной индуктивности «работает» электрический ток (то есть движение электронов), тогда как при вакуумном туннелировании фононов движутся сами атомы.

Конкретный механизм, приводящей к столь эффективной связи между колебанием кристалла и электрическими полями, может быть разный. В теоретической статье финских исследователей предлагается для этой цели использовать пьезоэлектрики.

Рис.2. Использование пьезоэлектриков как элемент датчика [5] давления

Пьезоэле́ктрики

Пьезоэле́ктрики — диэлектрики, в которых наблюдается пьезоэффект, то есть те, которые могут либо под действием деформации индуцировать электрический заряд на своей поверхности (прямой пьезоэффект), либо под влиянием внешнего электрического поля деформироваться (обратный пьезоэффект) [6]. Оба эффекта открыты братьями Жаком  и Пьером Кюри в 1880—1881 гг. Пьезоэлектрики широко используются в современной технике в качестве элемента датчика давления (рис.2). Существуют пьезоэлектрические  детонаторы, источники звука огромной мощности, миниатюрные трансформаторы,  кварцевые резонаторы  для высокостабильных  генераторов частоты, пьезокерамические фильтры, ультразвуковые  линии задержки  и др. Достаточно взять достаточно чувствительный пьезоэлектрик, который под механическим воздействием звуковой волны — скажем, внутри космического корабля  — будет деформироваться и, как следствие, создавать электромагнитное поле. Полю этому никакой вакуум нипочем, и оно будет распространяться, воздействуя, в том числе, и на работающий с ним «в команде» второй пьезоэлектрик  — например, расположенный внутри второго корабля. Тот будет деформироваться и порождать механические колебания воздуха. Звук пошел.

Пьезоэлектрики могут иметь большое будущее: при  все большей миниатюризации электронных компонентов то незначительное количество энергии, которое они позволяют давать, может оказаться вполне достаточным для питания множества перспективных инструментов. 

Наиболее широкое применение в этих целях кроме кристаллического кварца получила поляризованная пьезокерамика, изготовленная из поликристаллических  сегнетоэлектриков, например, из цирконата-титаната свинца.

Самого по себе этого еще недостаточно: для эффективного перескока фононов через вакуумный зазор необходимо организовать резонанс между «набегающими» фононами, переменными электрическими полями и «убегающими» фононами в другом кристалле. Вычисления показывают, что при реалистичных параметрах веществ такой резонанс действительно существует, так что при определенных углах падения фононы могут туннелировать с вероятностью вплоть до 100%. Исследователи говорят, что промежуток не должен быть особенно маленьким, а эффективность переноса звука должна меняться в зависимости от частоты звуковой волны и угла, под которым волна «входит» в первый кристалл. Некоторые комбинации волн, почти не теряют энергию, при перепрыгивании вакуумного промежутка.

В рамках новой теории ученые описывали электромагнитные взаимодействия между атомами двух материалов при помощи микроскопических уравнений Максвелла. Эти уравнения не используют понятия диэлектрической проницаемости (которое работает только на больших масштабах), а рассматривают в качестве основного параметра частоту колебаний атомов в атомной решетке. Передачу энергии ученые описывают при помощи функции Грина - классического метода решения подобных задач.

Список литературы.

1. Негров Д.А. Ультразвуковые колебательные системы. Омск: Изд.ОмГТУ, 2012. – 128 с.

2. https://sfiz.ru/news/newsfiz/zvuk_mozhet_peredavatsja

3. Altfeder I., Voevodin A., Roy A. Vacuum Phonon Tunneling // Phys. Rev. Lett. 105, 166101 (11 October 2010).

4. Prunnila M., Meltaus J.. Acoustic Phonon Tunneling and Heat Transport due to Evanescent Electric Fields // Phys. Rev. Lett. 105, 125501 (2010); arXiv:1003.1408. 

5. Kittel A., Müller-Hirsch W., Parisi J. et al. Near-Field Heat Transfer in a Scanning Thermal Microscope, Phys. Rev. Lett. 95, 224301 (2005)

6. Пьезоэлектрические материалы - Физическаяэнциклопедия.http://www.femto.com.ua/articles/part_2/3200.html

6.https://ru.wikipedia.org/wiki/%D0%9F%D1%8C%D0%B5%D0%B7%D0%BE%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D0%BA%D0%B8

Просмотров работы: 74