ПОВЫШЕНИЕ НАДЕЖНОСТИ РАБОТЫ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ - Студенческий научный форум

XIII Международная студенческая научная конференция Студенческий научный форум - 2021

ПОВЫШЕНИЕ НАДЕЖНОСТИ РАБОТЫ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ

Смирнова Э.Я. 1, Кочева М.А. 1
1ННГАСУ
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Система теплоснабжения - совокупность технических устройств, агрегатов и подсистем, обеспечивающих приготовление теплоносителя, его транспортировку и распределение в соответствии со спросом на теплоту по отдельным потребителям.

Срок службы тепловых сетей - период времени в календарных годах со дня ввода в эксплуатацию, по истечении которого следует провести экспертное обследование технического состояния трубопровода с целью определения допустимости, параметров и условий дальнейшей эксплуатации трубопровода или необходимости его демонтажа.

Нормативный срок службы: стальных трубопроводов составляет от 20 до 25 лет, труб из высокопрочного чугуна с шаровидным графитом – 45-50 лет, стальных пластиковых составляет 20-25 лет.

Понятие надежности систем теплоснабжения базируется на вероятностной оценке работы системы, что в свою очередь связано с вероятностной оценкой продолжительности работы ее элементов, которая определяется законом распределения времени этой работы [1].

Главный критерий надежности систем — безотказная работа элемента (системы) в течение расчетного времени. Система теплоснабжения относится к сооружениям, обслуживающим человека, ее отказ влечет недопустимые для него изменения окружающей среды [2].

Основными свойствами надежности являются безотказность, долговечность, ремонтопригодность, сохраняемость, устойчивоспособность, режимная управляемость, живучесть и безопасность. На современном этапе развития теплоснабжения самым слабым звеном всей цепи являются тепловые сети [3].

Очень важным фактором, влияющим на безопасность и надежность систем теплоснабжения, являются гидравлические удары.

В системах теплоснабжения гидравлические удары появляются в случае отключения сетевых насосов, ввиду отказов электроснабжения при ошибочном закрытии запорной и регулирующей арматуры, а также из-за повторной конденсации вскипевшего теплоносителя при резких колебаниях давления. В нашей стране, исходя из статистики, за год наблюдается более 10 случаев отключения электроснабжения собственных нужд на ТЭЦ и крупных котельных [4].

Аварии, обусловленные гидравлическими ударами, сопровождаются массовыми разрывами отопительных приборов потребителей, разрушением теплопроводов, теплофикационного оборудования источника тепловой энергии. Это приводит к порче имущества, травматизму людей и, как правило, к длительному прекращению теплоснабжения, а в период стояния низких температур наружного воздуха – часто к невозможности восстановить теплоснабжение вплоть до потепления с тяжелейшими социальными последствиями. Разрывы сетевых трубопроводов приводят к затоплению помещений ТЭЦ [5].

Для предотвращения аварий необходимо рассчитать параметры нестационарных гидравлических режимов: расходы сетевой воды в подающей и обратной магистрали, перепад давлений на бойлерах. Расчёты проводятся с помощью программно- расчётного комплекса, моделирующего физические процессы, происходящие при стационарных и нестационарных тепловых и гидравлических режимах работы.

Так же надежность системы теплоснабжения можно обеспечить различными способами. Один из общепринятых - применение более надежных элементов системы централизованного теплоснабжения (СЦТ) в сочетании с резервированием наиболее ответственных элементов системы [6]. Резервирование может потребовать внедрения режимных мероприятий для повышения управляемости СЦТ, чтобы в состоянии отказа перераспределять потоки тепла и обеспечивать выполнение нормативов надежности. Нерезервированные элементы должны иметь такие показатели, при которых выход их из строя не повлек бы за собой полного отказа всей системы. Исследования показали, что современные системы теплоснабжения для обеспечения требований по надёжности должна проектироваться на максимальные тепловые нагрузки, а местные потребители должны управлять поступающими потоками теплоносителя и снижением температуры сетевой воды. Для повышения надёжности систем основные тепломагистрали закольцовывают [7].

Согласно исследованиям - современные системы теплоснабжения для обеспечения требований по надёжности должна проектироваться на максимальные тепловые нагрузки, а местные потребители должны управлять поступающими потоками теплоносителя и снижением температуры сетевой воды

Список использованной литературы

1. Надежность систем энергетики. Терминология. - М.: Наука, 1980. – 243 с.

2. Соколов Е.Я. Теплофикация и тепловые сети. - М.: Энергоиздат, 1982.- 472 с.

3. Смородова О.В., Скрипченко А.С. Порядковые статистики в системах теплоснабжения//Электронный научный журнал Нефтегазовое дело. 2016. №4. С.124-137.

4. Пащенко Е.И. Анализ возможности сокращения «перетопа» тепловых потребителей при «изломе» температурного графика теплосети // Новости теплоснабжения.2002. № 12

5. Хаванов П.А. Децентрализованное теплоснабжение – альтернатива или шаг назад // Новости теплоснабжения. – 2014. – № 15.

6. Сулейманов А.М., Хафизов Ф.М. Оценка погрешности измерений. - Уфа, УГНТУ: 2007. – 32 с.

7. Байков И.Р. Принципы реконструкции системы энергоснабжения населенных пунктов//Известия высших учебных заведений. Проблемы энергетики.2001. №7-8. С.94-98.

Просмотров работы: 377