Свойства высокотемпературных сверхпроводников - Студенческий научный форум

XIII Международная студенческая научная конференция Студенческий научный форум - 2021

Свойства высокотемпературных сверхпроводников

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

Для начала следует определить, что же такое сверхпроводимость. Сверхпроводимость — свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько сотен соединений, чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние. Сверхпроводимость — квантовое явление. Оно характеризуется также эффектом Мейснера, заключающимся в полном вытеснении магнитного поля из объёма сверхпроводника. Существование этого эффекта показывает, что сверхпроводимость не может быть описана просто как идеальная проводимость в классическом понимании. [1]

Теперь выясним что такое эффект Мейснера. Он является даже более важным свойством сверхпроводника, чем нулевое электрическое сопротивление и заключается в вытеснении постоянного магнитного поля из сверхпроводника. Из этого экспериментального наблюдения делается вывод о существовании незатухающих токов внутри сверхпроводника, которые создают внутреннее магнитное поле, противоположно направленное внешнему, приложенному магнитному полю и компенсирующее его. [1]

ОСНОВНАЯ ЧАСТЬ

Теперь определим, что же понимают под высокотемпературной сверхпроводимостью. Высокотемпературная сверхпроводимость (ВТСП, Высокотемпературные сверхпроводники или Высокие-Tc) — сверхпроводимость при относительно больших температурах. Исторически граничной величиной является температура в 30 К, однако ряд авторов под ВТСП подразумевает сверхпроводники с критической температурой выше точки кипения азота (77 К или −196 °C). [2] Как мы видим температуры здесь не очень высокие.

Первыми явление высокотемпературной сверхпроводимости в соединении La2-xBaxCuO4 с критической температурой 35 К открыли сотрудники научного подразделения корпорации IBM Карл Мюллер и Георг Беднорц в 1986 году. За это открытие в 1987 году им была присуждена Нобелевская премия. Смешанные керамики такого типа (перовскиты AMO3) в это же время активно изучались в СССР.

В 1987 году был открыт сверхпроводник YBCO (оксид иттрия-бария-меди), с критической температурой 92 К. Это был первый сверхпроводник, критическая температура которого выше температуры кипения жидкого азота (77 К).

На 2015 год рекордное значение критической температуры Tc 203 K было достигнуто в соединении серы и водорода, помещённой под давление 150 ГПа (1 млн атмосфер).

В 2018 году рекорд высокотемпературной сверхпроводимости побит сразу дважды:

при сжатии супергидрида лантана LaH10 до 170 ГПа (около двух миллионов атмосфер) получили Tc = −13 °С (260 К).

по утверждению индийских учёных, при охлаждении наноструктурированного серебра на золотой подложке им удалось получить Tc= 236 К (-37°С) — при нормальном давлении.

В 2020 году в журнале Nature опубликован новый рекорд для гидрида серы. Добавлением углерода группа ученых из университета Рочестера добилась критической температуры более 15 °С (при давлении 267 ГПа). [3]

Особое значение высокотемпературной сверхпроводимости заключается в возможности практического использования без сильного охлаждения или с более дешевыми и удобными охладителями (жидким водородом, азотом, метаном), чем необходимый для классических сверхпроводников жидкий гелий под давлением.

К 2020 году наиболее высокотемпературными сверхпроводниками при атмосферном давлении являются купраты — керамики. [2]

Рассмотрим момент перехода в сверхпроводящее состояние и температуры при нем. Температурный интервал перехода в сверхпроводящее состояние для чистых образцов не превышает тысячных долей Кельвина и поэтому имеет смысл определённое значение Тс — температуры перехода в сверхпроводящее состояние. Эта величина называется критической температурой перехода. Ширина интервала перехода зависит от неоднородности металла, в первую очередь — от наличия примесей и внутренних напряжений. Известные ныне температуры Тс изменяются в пределах от 0,0005 К у магния (Mg) до 23,2 К у интерметаллида ниобия и германия (Nb3Ge, в плёнке) и 39 К у диборида магния (MgB2) у низкотемпературных сверхпроводников (Тс ниже 77 К, температуры кипения жидкого азота), до примерно 135 К у ртутьсодержащих высокотемпературных сверхпроводников.

В настоящее время фаза HgBa2Ca2Cu3O8+d (Hg−1223) имеет наибольшее известное значение критической температуры — 135 К, причем при внешнем давлении 350 тысяч атмосфер температура перехода возрастает до 164 К, что лишь на 19 К уступает минимальной температуре, зарегистрированной в природных условиях на поверхности Земли. Таким образом, сверхпроводники в своём развитии прошли путь от металлической ртути (4,15 К) к ртутьсодержащим высокотемпературным сверхпроводникам (164 К). В 2000 г. было показано, что небольшое фторирование упомянутой выше ртутной керамики позволяет поднять критическую температуру при обычном давлении до 138 К.

Следует определить два вида сверхпроводников первоначально изучавшиеся сверхпроводники, такие, как ртуть, свинец, алюминий, назвали сверхпроводниками I рода. А сверхпроводники II рода — это в основном сплавы, а из чистых элементов — ниобий.

Сверхпроводники I рода вытесняют магнитное поле и способны «бороться» против него, пока его напряженность не достигла критического значения Hc. Выше этого предела вещество переходит в нормальное состояние. В промежуточном состоянии образец как бы впускает в себя магнитное поле, однако с точки зрения физики точнее сказать, что образец просто разбивается на «большие» соседствующие куски — нормальные и сверхпроводящие. Через нормальные «протекает» магнитное поле напряженностью Hc, а в сверхпроводящих, как и положено, магнитное поле равно нулю.

Сверхпроводники II рода также вытесняют магнитное поле, но только очень слабое. При повышении напряженности магнитного поля сверхпроводник II рода «находит возможность» впустить поле внутрь, одновременно сохраняя сверхпроводимость. Это происходит при напряженности поля, намного меньшей Hc: в сверхпроводнике самопроизвольно зарождаются вихревые токи. [4]

Непосредственно сам момент перехода вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств и называется фазовый переход в сверхпроводящее состояние. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля при температуре перехода Тc теплота перехода (поглощения или выделения) обращается в нуль, а, следовательно, терпит скачок теплоёмкость, что характерно для фазового перехода ΙΙ рода. Такая температурная зависимость теплоемкости электронной подсистемы сверхпроводника свидетельствует о наличии энергетической щели в распределении электронов между основным состоянием сверхпроводника и уровнем элементарных возбуждений.

Рис. 1. Характер изменения теплоемкости

Когда же переход из сверхпроводящего состояния в нормальное осуществляется изменением приложенного магнитного поля, то тепло должно поглощаться (например, если образец теплоизолирован, то его температура понижается). А это соответствует фазовому переходу Ι рода. Для сверхпроводников ΙΙ рода переход из сверхпроводящего в нормальное состояние при любых условиях будет фазовым переходом ΙΙ рода. [1] Характер изменения теплоёмкости представлен на рис. 1[1]

ЗАКЛЮЧЕНИЕ

Ограниченность практического применения керамических ВТСП обусловлена тем, что магнитное поле, создаваемое протекающим по ВТСП током, при большой величине приводит к разрушению собственной слоистой структуры проводника и, следовательно, необратимой утрате сверхпроводящих свойств. При этом для сверхпроводящих изделий (как ВТСП, так и классических) достаточно такого нарушения в одной единственной точке, так как возникший дефект мгновенно становится участком с большим сопротивлением, на котором выделяется тепло, что вызывает последовательный нагрев соседних участков, то есть лавинообразный выход из сверхпроводящего состояния всего проводника.

Главной целью исследований в области являются ВТСП — материалы, работающие как минимум при температурах, широко распространенных на Земле (порядка −30 °C), как максимум — при комнатной температуре. Их создание привело бы к революции в энергетике и электронике, где значительной проблемой являются потери на сопротивление проводника. [3]

Явление сверхпроводимости в целом используется для получения сильных магнитных полей (например, в циклотронах), поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются т. н. сверхпроводники II рода, в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока (вихри Абрикосова). Вещество же между нитями остаётся сверхпроводящим. [1]

ЛИТЕРАТУРА

Сверхпроводимость – Википедия [Электронный ресурс] Энциклопедия / Wikipedia. – Режим доступа к энциклопедии: https://ru.wikipedia.org/wiki/Сверхпроводимость - Загл. с экрана.

Высокотемпературная сверхпроводимость [Электронный ресурс] Энциклопедия / WIKI2 – Режим доступа к энциклопедии: https://wiki2.org/ru/Высокотемпературная_сверхпроводимость - Загл. с экрана.

Высокотемпературная сверхпроводимость [Электронный ресурс] Энциклопедия / Wikipedia. – Режим доступа к энциклопедии: https://ru.wikipedia.org/wiki/Высокотемпературная_сверхпроводимость#cite_note-6 - Загл. с экрана.

Гинзбург В. Л. Сверхпроводимость [Текст] / В. Л. Гинзбург, Е. А. Андрюшин, Альфа-М, 2006, - 112 с.

Просмотров работы: 188