Nature of lightning - Студенческий научный форум

XIII Международная студенческая научная конференция Студенческий научный форум - 2021

Nature of lightning

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

Когда в электрическом поле атмосферы развивается искровой разряд гигантских размеров, мы можем наблюдать удивительное природное явление – молнию.[1] Мо́лния — электрический искровой разряд в атмосфере, происходит во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом. Молнии также были зафиксированы на Венере, Юпитере, Сатурне, Уране и др. Сила тока в разряде молнии на Земле достигает 10—500 тысяч ампер, напряжение — от десятков миллионов до миллиарда вольт.[2]

ОСНОВНАЯ ЧАСТЬ

История изучения молнии

Изучение грозовой активности и, в частности, молнии, неразрывно связаны с темой электричества и его проявлений в пространстве около земного шара. Совокупность проявлений атмосферного электричества исследует физика атмосферы. Предметом ее изучения выступает целый спектр связанных между собой электрических явлений: ионизация и проводимость атмосферы, электрическое поле и токи, электрические заряды и разряды. Прорыв в этой области совершил в 18 веке видный американский деятель из научной и политической областей, Бенджамин Франклин. Благодаря экспериментам он выяснил, что молния имеет электрическую природу, и определил понятия положительного и отрицательного заряда. В 1752 году Франклин впервые предложил проект молниеотвода на основе металлического стержня, соединенного с землей. Ключевые принципы, открытые ученым, по сей день актуальны в деле устройства молниезащиты зданий и сооружений.

Тогда же российский ученый и естествоиспытатель Михаил Васильевич Ломоносов объяснил природу грозовых облаков, высказав гипотезу о причинах их электризации. Свою научную теорию он изложил в работе «Слово о явлениях воздушных, от электрической силы происходящих». Оба исследователя, Ломоносов и Франклин, использовали в своих экспериментах воздушного змея, запуская его в направлении грозовых облаков. Соратник Ломоносова, Георг Вильгельм Рихман, погиб во время грозы, проводя электрические опыты. Тем не менее, незадолго до этого академики успели совместно положить начало серьезному изучению молниезащиты в России. В 1753 году Ломоносов и Рихман создали первые в России прототипы молниеотводов. Также Рихман начал исследования взаимодействия электрически заряженных тел. Этот вопрос занимал многих видных ученых, среди которых были Франц Эпинус, Даниил Бернулли, Джозеф Пристли, Джон Робинсон и Генри Кавендиш.

Электрическая искра, или искровой разряд, представляет собой пучок заполненных плазмой каналов. Искровые каналы представляют собой разветвленные яркие полоски, напоминающие нити. Такой разряд в природе и является молнией. Впервые искусственным путем электрическая искра была получена в электрическом конденсаторе голландского ученого Питера ван Мушенбрука в 1745 году.

Электрический заряд, или количество электричества, как скалярная величина впервые был определен Шарлем Кулоном, физиком и инженером из Франции. Связь силы взаимодействия между неподвижными точечными электрическими зарядами и расстояния между ними была выведена им в законе Кулона в 1785 году. Кулон как единица измерения электрического заряда определяется величиной заряда, прошедшего через проводник за 1 секунду при силе тока 1 ампер. Электрические заряды в околоземном космическом пространстве, в атмосфере и на поверхности нашей планеты генерируют поле, которое называется электрическим полем Земли. Заряд в полмиллиона кулонов создает у поверхности Земли электрическое поле напряжённостью в десятки вольт на метр.

Единица измерения электрического напряжения “вольт” получила свое название в честь Алессандро Вольты, ученого из Италии. Он создал первый химический источник тока при помощи кислоты и пластин из цинка и меди, а также ряд электрических приборов. В вольтах выражается электростатический потенциал. Вольт обозначается как В или V. Мощность постоянного электрического тока измеряется в ваттах – единице, названной в честь изобретателя из Шотландии Джеймса Ватта. Ватт обозначается как Вт или W.

Принцип взаимодействия электрических токов был сформулирован физиком Андре Ампером в 1820 году. Французский ученый ввел в физику и само понятие электрического тока. Закон Ампера описывает состояния проводников в зависимости от направления тока. Если электрические токи в параллельных проводниках текут в одном направлении - проводники притягиваются. Если в них же токи текут в противоположных направлениях, то параллельные проводники отталкиваются. Со временем единица измерения силы неизменяющегося электрического тока получила наименование “ампер”. Ампер обозначается как A.

Тепловое действие электрического тока сформулировал в виде закона английский физик Джеймс Джоуль. Единица измерения энергии получила название в честь этого ученого. Джоуль обозначается как Дж или J. За 1 секунду силы электрического поля при напряжении в 1 вольт для поддержания силы тока в 1 ампер совершают работу в 1 джоуль.

20 век принес человечеству знания об ионосфере и магнитосфере. А затем, с развитием космических технологий, стало возможным исследование процессов в самых высоких слоях атмосферы. Наибольший вклад в формирование современного знания об электрических атмосферных явлениях внесли Нобелевский лауреат Чарлз Вильсон и ученый-физик Яков Френкель.[1]

Виды молний

1. Линейная молния туча-земля

 

Рис.1 - Линейная молния туча-земля [3]

Ученые считают, что молнии образуются в результате распределения электронов в облаке, обычно позитивно заряжен верх облака, а негативно — из. В результате получаем очень мощный конденсатор, который может время от времени разряжаться в результате скачкообразного преобразования обычного воздуха в плазму (это происходит из-за все более сильной ионизации атмосферных слоев, близких к грозовым тучам). Кстати, температура воздуха в месте прохождения заряда (молнии) достигает 30 тысяч градусов, а скорость распространения молнии — 200 тысяч километров в час.

2. Молния земля-облако

 

Рис.2 - Молния земля-облако [3]

Образуются они в результате накапливающегося электростатического заряда на вершине самого высокого объекта на земле, что делает его весьма «привлекательным» для молнии. Такие молнии образуются в результате «пробивания» воздушной прослойки между вершиной заряженного объекта и нижней частью грозовой тучи.

3. Молния облако-облако

Поскольку верхняя часть облака заряжена позитивно, а нижняя — негативно, рядом стоящие грозовые облака могут простреливать электрическими зарядами друг друга.



Рис. 3- Молния облако-облако [3]

4. Горизонтальная молния

 

Рис. 4 - Горизонтальная молния [3]

Горизонтальная молния. Эта молния не бьет в землю, она распространяется в горизонтальной плоскости по небу. Иногда такая молния может распространяться по чистому небу, исходя от одной грозовой тучи. Такие молнии очень мощные и очень опасные.

5. Ленточная молния

 

Рис. 5 - Ленточная молния [3]

Ленточная молния — несколько одинаковых зигзагообразных разрядов от облаков к земле, параллельно смещённых относительно друг друга с небольшими промежутками или без них.

6. Четочная (пунктирная молния)

 

Рис. 6 - Четочная (пунктирная молния) [3]

Редкая форма электрического разряда при грозе, в виде цепочки из светящихся точек. Время существования четочной молнии 1–2 секунды. Примечательно, что траектория четочной молнии нередко имеет волнообразный характер. В отличие от линейной молнии след четочной молнии не ветвится — это является отличительной особенностью этого вида.

7. Шторовая молния

Рис.7 -Шторовая молния [3]

Шторовая молния выглядит как широкая вертикальная полоса света, сопровождающаяся низким негромким гулом.

8. Объёмная молния

 

Рис.8 - Объёмная молния [3]

Объёмная молния – белая или красноватая вспышка при низкой полупрозрачной облачности, с сильным звуком треска “отовсюду”. Чаще наблюдается перед основной фазой грозы.

9. Эльфы

 

Рис. 9 – Эльфы [3]

Эльфы представляют собой огромные, но слабосветящиеся вспышки-конусы диаметром около 400 км, которые появляются непосредственно из верхней части грозового облака. Высота эльфов может достигать 100 км, длительность вспышек — до 5 мс (в среднем 3 мс)

10. Джеты

Рис. 10- Джеты [3]

Джеты представляют собой трубки-конусы синего цвета. Высота джетов может достигать 40-70 км (нижняя граница ионосферы), живут джеты относительно дольше эльфов.

11. Шаровые молнии

Рис. 11 - Шаровые молнии [3]

Шаровая молния — светящийся плавающий в воздухе плазменный шар, уникально редкое природное явление. Единой физической теории возникновения и протекания этого явления к настоящему времени не представлено.

Некоторые люди утверждают, что шаровых молний не бывает. Другие размещают видео шаровых молний и доказывают, что все это — реальность. В общем, ученые пока твердо не уверены в существовании шаровых молний.

12. Вулканические молнии

Рис. 12 – Вулканические молнии [3]

По одному из многочисленных предположений ученых вулканические молнии возникают вследствие того, что пузыри магмы, выбрасываемые вверх, либо вулканический пепел несут электрический заряд, и при их движении возникают разделенные области. Кроме этого, выдвигается предположение, что вулканические молнии могут быть вызваны наводящими заряд столкновения в вулканической пыли.[3]

Стадии развития молнии

Молния переносит с облака на землю положительный или отрицательный заряд. Знак заряда определяет ее полярность. Молнии с отрицательным зарядом встречаются значительно чаще, и их параметры более подробно изучены. Отрицательная нисходящая молния развивается в три стадии, которые образуют компоненту. За первой компонентой, как правило, идут последующие. Их количество может достигать нескольких десятков.

Разряд молнии начинается при появлении лидера. Он оказывает тепловое, механическое и электрическое воздействие на объекты, через которые проходит. Лидер молнии состоит из канала, головки канала и стримерной зоны. Канал лидера молнии – это плазменное образование, через которое протекает ток. Канал прорастает, пробивая промежуток между облаком и землей. Он несет огромный потенциал в десятки мегавольт, а сила тока в нем исчисляется сотнями ампер. Величина распределенного по его длине заряда электричества достигает нескольких кулон. Так за миллисекунды происходит лидерная стадия развития молнии.

Далее следует наиболее опасный процесс наподобие короткого замыкания – главная стадия. Высокотемпературный проводящий канал замыкается на землю и провоцирует переходный процесс разряда протяженной заряженной системы, созданной лидером. На этой стадии импульс тока может протекать по каналу за сотни микросекунд с амплитудой уже в несколько сотен килоампер. Скорость его распространения соизмерима со скоростью света. Главную стадию сопровождают световые вспышки, яркое свечение и раскаты грома. Гром вызывают колебания воздуха, когда нагретая молнией волна воздуха сталкивается с холодной.

На финальной стадии канал молнии продолжает переносить заряд к земле, но менее интенсивно. Тем не менее, для этой стадии характерна большая длительность тока, которой, в основном, обусловлено термическое воздействие молнии.[1]

ЗАКЛЮЧЕНИЕ

Молния - одно из самых разрушительных и устрашающих природных явлений, с которыми повсеместно сталкивается человек. В настоящий момент современный уровень науки и техники позволяет создать действительно функционально надежную и соответствующую техническому уровню систему молниезащиты.[4]

Литература

Природа молнии. Что такое молния и как она возникает? - https://ezetek.ru/poleznye-stati/priroda-molnii-chto-takoe-molniya-i-kak-ona-voznikaet

Молния - https://ru.wikipedia.org/wiki/Молния

Основные виды молний - https://zefirka.net/2015/06/29/osnovnye-vidy-molnij/

Виды молний – Поражения электрическим током или молнией - https://studbooks.net/1413896/bzhd/vidy_molniy

Просмотров работы: 318