Autopilot - Студенческий научный форум

XII Международная студенческая научная конференция Студенческий научный форум - 2020

Autopilot

Исааков М.А. 1
1ВлГУ им. Столетовых
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

A self-driving car, also known as an autonomous vehicle, connected and autonomous vehicle, driverless car, robo-car, or robotic car, is a vehicle that is capable of sensing its environment and moving safely with little or no human input.

Self-driving cars combine a variety of sensors to perceive their surroundings, such as radarlidarsonarGPSodometry and inertial measurement units. Advanced control systems interpret sensory information to identify appropriate navigation paths, as well as obstacles and relevant signage.

Long distance trucking is seen as being at the forefront of adopting and implementing the technology.

History

Experiments have been conducted on automated driving systems (ADS) since at least the 1920s; trials began in the 1950s. The first semi-automated car was developed in 1977, by Japan's Tsukuba Mechanical Engineering Laboratory, which required specially marked streets that were interpreted by two cameras on the vehicle and an analog computer. The vehicle reached speeds up to 30 kilometres per hour (19 mph) with the support of an elevated rail.

The first truly autonomous cars appeared in the 1980s, with Carnegie Mellon University's Navlaband ALV projects funded by the United States' Defense Advanced Research Projects Agency (DARPA) starting in 1984 and Mercedes-Benz and Bundeswehr University Munich's EUREKA Prometheus Project in 1987. By 1985, the ALV had demonstrated self-driving speeds on two-lane roads of 31 kilometres per hour (19 mph) with obstacle avoidance added in 1986 and off-road driving in day and nighttime conditions by 1987. A major milestone was achieved in 1995, with CMU's NavLab 5 completing the first autonomous coast-to-coast drive of the United States. Of the 2,849 mi (4,585 km) between Pittsburgh, Pennsylvania and San Diego, California, 2,797 mi (4,501 km) were autonomous (98.2%), completed with an average speed of 63.8 mph (102.7 km/h). From the 1960s through the second DARPA Grand Challenge in 2005, automated vehicle research in the United States was primarily funded by DARPA, the US Army, and the US Navy, yielding incremental advances in speeds, driving competence in more complex conditions, controls, and sensor systems. Companies and research organizations have developed prototypes.The US allocated US$650 million in 1991 for research on the National Automated Highway System, which demonstrated automated driving through a combination of automation, embedded in the highway with automated technology in vehicles and cooperative networking between the vehicles and with the highway infrastructure. The program concluded with a successful demonstration in 1997 but without clear direction or funding to implement the system on a larger scale. Partly funded by the National Automated Highway System and DARPA, the Carnegie Mellon University Navlab drove 4,584 kilometres (2,848 mi) across America in 1995, 4,501 kilometres (2,797 mi) or 98% of it autonomously. Navlab's record achievement stood unmatched for two decades until 2015 when Delphi improved it by piloting an Audi, augmented with Delphi technology, over 5,472 kilometres (3,400 mi) through 15 states while remaining in self-driving mode 99% of the time. In 2015, the US states of NevadaFloridaCaliforniaVirginia, and Michigan, together with Washington, DC, allowed the testing of automated cars on public roads.

From 2016 to 2018, the European Commission funded the innovation strategy development for connected and automated driving through the Coordination Actions CARTRE and SCOUT. Moreover, the Strategic Transport Research and Innovation Agenda (STRIA) Roadmap for Connected and Automated Transport was published in 2019.

Technical challenges

There are different systems that help the self-driving car control the car. Systems that need improvement include the car navigation system, the location system, the electronic map, the map matching, the global path planning, the environment perception, the laser perception, the radar perception, the visual perception, the vehicle control, the perception of vehicle speed and direction, and the vehicle control method.

The challenge for driverless car designers is to produce control systems capable of analyzing sensory data in order to provide accurate detection of other vehicles and the road ahead. Modern self-driving cars generally use Bayesian simultaneous localization and mapping (SLAM) algorithms, which fuse data from multiple sensors and an off-line map into current location estimates and map updates. Waymo has developed a variant of SLAM with detection and tracking of other moving objects (DATMO), which also handles obstacles such as cars and pedestrians. Simpler systems may use roadside real-time locating system (RTLS) technologies to aid localization. Typical sensors include lidarstereo visionGPS and IMU. Control systems on automated cars may use Sensor Fusion, which is an approach that integrates information from a variety of sensors on the car to produce a more consistent, accurate, and useful view of the environment. Heavy rainfall, hail, or snow could impede the car sensors.

Driverless vehicles require some form of machine vision for the purpose of visual object recognition. Automated cars are being developed with deep neural networks, a type of deep learning architecture with many computational stages, or levels, in which neurons are simulated from the environment that activate the network. The neural network depends on an extensive amount of data extracted from real-life driving scenarios, enabling the neural network to "learn" how to execute the best course of action.

In May 2018, researchers from the Massachusetts Institute of Technology announced that they had built an automated car that can navigate unmapped roads. Researchers at their Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed a new system, called MapLite, which allows self-driving cars to drive on roads that they have never been on before, without using 3D maps. The system combines the GPS position of the vehicle, a "sparse topological map" such as OpenStreetMap, (i.e. having 2D features of the roads only), and a series of sensors that observe the road conditions.

Tesla Autopilot

In mid‑October 2015, Tesla Motors rolled out version 7 of their software in the US that included Tesla Autopilot capability. On 9 January 2016, Tesla rolled out version 7.1 as an over-the-air update, adding a new "summon" feature that allows cars to self-park at parking locations without the driver in the car. Tesla's automated driving features is currently classified as a Level 2 driver assistance system according to the Society of Automotive Engineers' (SAE) five levels of vehicle automation. At this level the car can be automated but requires the full attention of the driver, who must be prepared to take control at a moment's notice. Autopilot should be used only on limited-access highways, and sometimes it will fail to detect lane markings and disengage itself. In urban driving the system will not read traffic signals or obey stop signs. The system also does not detect pedestrians or cyclists.

Tesla Model S Autopilot system in use in July 2016; it was only suitable for limited-access highways, not for urban driving. Among other limitations, it could not detect pedestrians or cyclists.

On 20 January 2016, the first known fatal crash of a Tesla with Autopilot occurred in China's Hubei province. According to China's 163.com news channel, this marked "China's first accidental death due to Tesla's automatic driving (system)". Initially, Tesla pointed out that the vehicle was so badly damaged from the impact that their recorder was not able to conclusively prove that the car had been on Autopilot at the time; however, 163.com pointed out that other factors, such as the car's absolute failure to take any evasive actions prior to the high speed crash, and the driver's otherwise good driving record, seemed to indicate a strong likelihood that the car was on Autopilot at the time. A similar fatal crash occurred four months later in Florida. In 2018, in a subsequent civil suit between the father of the driver killed and Tesla, Tesla did not deny that the car had been on Autopilot at the time of the accident, and sent evidence to the victim's father documenting that fact.

The second known fatal accident involving a vehicle being driven by itself took place in Williston, Florida on 7 May 2016 while a Tesla Model S electric car was engaged in Autopilot mode. The occupant was killed in a crash with an 18-wheel tractor-trailer. On 28 June 2016 the US National Highway Traffic Safety Administration (NHTSA) opened a formal investigation into the accident working with the Florida Highway Patrol. According to NHTSA, preliminary reports indicate the crash occurred when the tractor-trailer made a left turn in front of the Tesla at an intersection on a non-controlled access highway, and the car failed to apply the brakes. The car continued to travel after passing under the truck's trailer. NHTSA's preliminary evaluation was opened to examine the design and performance of any automated driving systems in use at the time of the crash, which involved a population of an estimated 25,000 Model S cars. On 8 July 2016, NHTSA requested Tesla Motors provide the agency detailed information about the design, operation and testing of its Autopilot technology. The agency also requested details of all design changes and updates to Autopilot since its introduction, and Tesla's planned updates schedule for the next four months.

According to Tesla, "neither autopilot nor the driver noticed the white side of the tractor-trailer against a brightly lit sky, so the brake was not applied." The car attempted to drive full speed under the trailer, "with the bottom of the trailer impacting the windshield of the Model S". Tesla also claimed that this was Tesla's first known autopilot death in over 130 million miles (210 million kilometers) driven by its customers with Autopilot engaged, however by this statement, Tesla was apparently refusing to acknowledge claims that the January 2016 fatality in Hubei China had also been the result of an autopilot system error. According to Tesla there is a fatality every 94 million miles (151 million kilometers) among all type of vehicles in the US However, this number also includes fatalities of the crashes, for instance, of motorcycle drivers with pedestrians.

In July 2016, the US National Transportation Safety Board (NTSB) opened a formal investigation into the fatal accident while the Autopilot was engaged. The NTSB is an investigative body that has the power to make only policy recommendations. An agency spokesman said "It's worth taking a look and seeing what we can learn from that event, so that as that automation is more widely introduced we can do it in the safest way possible." In January 2017, the NTSB released the report that concluded Tesla was not at fault; the investigation revealed that for Tesla cars, the crash rate dropped by 40 percent after Autopilot was installed. According to Tesla, starting 19 October 2016, all Tesla cars are built with hardware to allow full self-driving capability at the highest safety level (SAE Level 5). The hardware includes eight surround cameras and twelve ultrasonic sensors, in addition to the forward-facing radar with enhanced processing capabilities. The system will operate in "shadow mode" (processing without taking action) and send data back to Tesla to improve its abilities until the software is ready for deployment via over-the-air upgrades. After the required testing, Tesla hopes to enable full self-driving by the end of 2019 under certain conditions.

Просмотров работы: 20