ПРОБЛЕМА ДЕФИЦИТА КАЛИЯ В ПРИРОДЕ - Студенческий научный форум

XI Международная студенческая научная конференция Студенческий научный форум - 2019

ПРОБЛЕМА ДЕФИЦИТА КАЛИЯ В ПРИРОДЕ

Костиков И.М. 1
1ФГБОУ ВО "Курганский государственный университет"
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

Актуальность исследования. Калий для организма имеет очень большое значение. От него зависит состояние мягких тканей и работа многих систем, среди которых – нервная, выделительная, костная, мышечная. 98% калия размещено в клетках тканей, а оставшиеся 2% – в межклеточном пространстве. Его недостаток или переизбыток может привести к серьёзным проблемам. Это же касается и растений, должный уровень содержания калия, позволяет обеспечивать благоприятный вегетативный период.

Противоречие состоит в том, что значение калия и его роль хорошо изучены, однако проблема дефицита калия в природе в результате использования в техногенезе не достаточно освещена.

Проблема – каково влияние недостаточного содержания калия на природные системы?

ОБЪЕКТ: Круговорот Калия в природных и антропогенных условиях.

Предметом исследования является проблема дефицита калия в природе в результате использования в техногенезе.

ЦЕЛЬ: дать характеристику проблематике недостаточного содержания калия в природных системах.

ЗАДАЧИ: (поменяны местами, то же сделать в содержании и тексте работы)

Охарактеризовать биологическую роль калия.

Разработать теоретическое обоснование проблемы исследования.

Обосновать роль калия в техногенезе

Разработать модели круговорота калия

МЕТОДЫ ИССЛЕДОВАНИЯ:

1. литературный,

2. описательный,

3. аналитический

4. статистический

5. исторический

ИСТОЧНИКИ ИНФОРМАЦИИ: в ходе написания работы были использованы источники информации из сети интернет, а также некоторой справочной литературы, полный список источников представлен в «Списке источников»

ГЛАВА 1. БИОЛОГИЧЕСКАЯ РОЛЬ КАЛИЯ

1.1.Для человека

Калий один из важнейших электролитов в организме. Калий, как и натрий, имеет большое значение в образовании буферных систем, предотвращающих сдвиги реакции среды и обеспечивающих их постоянство. Калий вместе с натрием регулирует содержание воды внутри клеток. Обеспечивает поддержание электрического потенциала в нервах и на поверхности клеточных мембран, чем регулируется сокращение мышц. Калий включается в механизм накопления гликогена - основного источника энергии в клетке. Калий активирует работу ряда ферментов. [8]

Нарушения калий-натриевого баланса приводит к нарушению водного обмена, обезвоживанию, ослаблению мускулатуры.

Считается, что калий обладает защитным действием против нежелательного действия избытка натрия и нормализует давление крови. По этой причине в некоторых странах предложено выпускать поваренную соль с добавлением хлорида калия. Однако и избыток калия по отношению к натрию может вызвать нарушение работы сердечно-сосудистой системы. [7]

Главной биологической функцией калия является формирование трансмембранного потенциала и распространение изменения потенциала по клеточной мембране путем обмена с ионами натрия по градиенту концентраций. Вместе с натрием и хлором, калий является постоянным составным элементом всех клеток и тканей. В организме эти элементы содержатся в определенном соотношении и обеспечивают постоянство внутренней среды. В виде катиона К+ калий участвует в поддержании гомеостаза (ионное равновесие, осмотическое давление в жидкостях организма). Хлориды калия и натрия, будучи сильными электролитами, участвуют в генерации и проведении электрических импульсов в нервной и мышечной ткани. Таким образом калий участвует в поддержании электрической активности мозга, функционировании нервной ткани, сокращении скелетных и сердечных мышц. Калий регулирует активность таких важнейших ферментов, как К+-АТФ-аза, ацетилкиназа, пируватфосфокиназа. [8]

Терапевтическое значение калия связано с его раздражающим действием на слизистые оболочки и повышением тонуса гладких мышц (кишечник, матка), в силу чего его соединения используются в качестве слабительных средств. Калий вызывает расширение сосудов внутренних органов и сужение периферических сосудов, что способствует усилению мочеотделения. Калий замедляет ритм сердечных сокращений и, действуя аналогично блуждающему нерву, участвует в регулировании деятельности сердца.

Основные функции калия в организме:

Поддержание постоянства состава клеточной и межклеточной жидкости.

Поддержание кислотно-щелочного равновесия.

Обеспечение межклеточных контактов.

Обеспечение биоэлектрической активности клеток.

Поддержание нервно-мышечной возбудимости и проводимости.

Участие в нервной регуляции сердечных сокращений.

Поддержание водно-солевого баланса, осмотического давления.

Роль катализатора при обмене углеводов и белков.

Поддержание нормального уровня кровяного давления.

Участие в обеспечении выделительной функции почек.

В организм соединения калия поступают с пищей. Биоусвояемость калия организмом составляет 90-95%.

Соли калия легко всасываются и быстро выводятся из организма с мочой, потом и через желудочно-кишечный тракт.

Калий является основным внутриклеточным катионом. Его концентрация в клетках в 30 раз выше, чем вне клеток. В организме взрослого человека содержится 160-180 г калия (около 0,23% от общей массы тела).

Суточная потребность в калии составляет 2 г.

В США рекомендуемая минимальная величина суточного потребления калия установлена в размере не менее 2000 мг для лиц 18-летнего возраста. Для людей старшего возраста к этой величине прибавляют количество лет отдельного индивидуума (напр., для людей в возрасте 50 лет этот показатель равен 2000 + 50 = 2050 мг).

Рекомендуемое ежедневное поступление для спортсменов и людей, занятых тяжелым трудом - 2,5-5 г.

При смешанном пищевом рационе потребность в калии удовлетворяется полностью, однако имеются существенные сезонные колебания: невысокое потребление весной (около 2 г в сутки), максимальное - осенью (5-6 г в сутки). Содержание калия в пище жителей разных стран колеблется от 1800 до 5600 мг. Считается, что взрослый человек потребляет в день 2200-3000 мг калия.

Калий в основном содержится в растительных продуктах. Много калия содержат картофель (429 мг/100 г), хлеб (240 мг/100 г.), арбуз, дыня. Значительным содержанием калия отличаются бобовые: соя (1796 мг/100 г), фасоль (1061 мг/100 г), горох (900 мг/100 г). Много калия содержат крупы: овсяная, пшено и др. Существенным источником калия являются овощи: капуста (148 мг/100 г), морковь (129 мг/100 г), свекла (155 мг/100 г), а также продукты животного происхождения; молоко (127 мг/100 г), говядина (241 мг/100 г), рыба (162 мг/100 г). Также достаточно много калия в яблоках, винограде, цитрусовых, киви, бананах, авокадо, сухофруктах, чае.

Необходимо помнить о том, что пища, богатая калием (орехи, бананы, картофель, морковь, абрикосы), вызывает повышенное выведение натрия, и наоборот. При преимущественном потреблении продуктов животного происхождения человек получает сбалансированное количество натрия и калия. При питании растительной пищей, богатой калием, необходимо дополнительное введение натрия. [8]

Дефицит калия в организме представляет собой проблему, поскольку недостаток этого элемента влияет на нормальный ритм сердечных сокращений и провоцирует сердечные приступы. Одним из первых симптомов недостаточного потребления калия является мышечная слабость. Возможны и другие симптомы: спазмы, поверхностное дыхание, утомление, тошнота, рвота, спутанность сознания, учащенное мочеиспускание.

Пониженное содержание калия в организме увеличивает риск нарушений проводимости и обменных процессов в миокарде, сопровождается нарушениями регуляции артериального давления. Дефицит калия способствует развитию эрозивных процессов слизистых оболочек (язвенная болезнь желудка и двенадцатиперстной кишки, эрозивный гастрит, эрозия шейки матки). Возрастает риск прерывания беременности, развития бесплодия. Больных нередко беспокоит сухость кожи, тусклость и слабость волос, плохое заживление кожных повреждений. [8]

Развитию гипокалиемии способствуют отрицательный азотистый баланс, алкалоз, гипомагниемия.

Основные причины дефицита калия:

Недостаточное поступление в организм.

Нарушение регуляции обмена калия.

Функциональные расстройства выделительных систем (почки, кожа, кишечник, легкие).

Усиленное выведение калия из организма под действием гормональных препаратов, мочегонных и слабительных средств.

Психические и нервные перегрузки, чрезмерные или хронически действующие стрессорные факторы.

Избыточное поступление в организм натрия, таллия, рубидия и цезия.

Основные проявления дефицита калия:

Психическое истощение, чувство усталости, безразличие к окружающему, депрессия, снижение работоспособности.

Мышечная слабость.

Ослабление защиты организма от токсических воздействий.

Истощение надпочечников, снижение адаптационных возможностей организма.

Обменные и функциональные нарушения в миокарде, изменение ритма сердечных сокращений, появление сердечных приступов, сердечная недостаточность.

Отклонения величины артериального давления от нормального уровня.

Сухость кожи, ломкость волос.

Нарушение функций легких, учащенное и поверхностное дыхание.

Тошнота, рвота, атония кишечника.

Эрозивный гастрит, язвенная болезнь.

Нарушение функции почек, учащенное мочеиспускание.

Невынашиваемость беременности, эрозия шейки матки, бесплодие.

Увеличение уровня калия в организме может быть следствием случайных отравлений соединениями калия. Токсичность солей калия определяется, как правило, токсичностью их анионов, таких как арсенит, хромат, фторид.

Точные данные о токсичности KCl для человека отсутствуют. Механизм токсического действия КCl в местах введения обусловлен в первую очередь высоким осмотическим давлением. В результате имеет место интенсивное поступление воды из окружающих тканей, приводящее к их обезвоживанию и нарушению физиологических функций клеток.

Избыточное поступление ионов К+ вызывает перегрузку соответствующих систем гомеостаза и нарушение метаболических процессов. В эпителии желудочно-кишечного тракта и почечных канальцев развивается воспаление, нередко приводящее к некрозу ткани. [8]

Постоянный избыток калия и натрия вызывает некоторое повышение уровня инсулина в крови. Отмечаются и другие гормональные сдвиги.

Люди с избытком калия обычно легко возбудимы, впечатлительны, гиперактивны, страдают от повышенной потливости, учащенных мочеиспусканий.

Накопление калия в крови, гиперкалиемия (при концентрации свыше 0,06%) приводит к тяжелым отравлениям, сопровождающимся параличом скелетных мышц; при концентрации калия в крови, превышающей 0,1%, наступает смерть. Длительное постоянное употребление калийных лечебных препаратов может вызывать ослабление сократительной деятельности сердечной мышцы, поэтому в таких случаях в место калийных назначают натриевые препараты. Развитию гиперкалиемии способствует ацидоз.

Основные причины избытка калия:

Избыточное поступление (в т.ч., длительный и избыточный прием препаратов калия, потребление "горьких" минеральных вод, постоянная картофельная диета и пр.).

Нарушение регуляции обмена калия.

Перераспределение калия между тканями организма.

Массированный выход калия из клеток (цитолиз, гемолиз, синдром раздавливания тканей).

Дисфункция симпатоадреналовой системы.

Инсулин-дефицитные состояния.

Нарушение функции почек, почечная недостаточность.

Основные проявления избытка калия:

Повышенная возбудимость, раздражительность, беспокойство, потливость.

Слабость и парезы мышц, дегенеративные нервно-мышечные расстройства.

Нейроциркуляторная дистония.

Аритмии, ослабление сократительной способности мышцы сердца.

Параличи скелетных мышц.

Кишечные колики.

Учащенное мочеиспускание.

Склонность к развитию сахарного диабета.

При дефиците калия в организме могут быть полезными следующие рекомендации:

Ограничение психических и нервных перегрузок, организация правильного режима труда и отдыха.

Нормализация регуляции обмена калия.

Ограничение приема лекарственных препаратов.

Ограничение избыточного потребления поваренной соли (полный отказ недопустим!).

Ограничение (исключение) потребления ненатуральных напитков (таких как фанта, кока-кола, пепси, лимонады и пр.).

Увеличение потребления продуктов с повышенным содержанием калия: молоко и молочные продукты, картофель, томаты, петрушка, бобы, абрикосы, чернослив, курага, бананы, изюм, какао, черный чай.

Прием калийсодержащих БАД и лекарственных препаратов.

При избытке калия в организме необходимо ограничить его поступление извне, принять меры к нормализации регуляции обмена и лечению сопутствующих заболеваний. [7]

1.2. Для растений

Калий наряду с азотом и фосфором относится к главным элементам питания растений. Он, безусловно, необходим всем растениям, животным и микроорганизмам. Попытки заменить калий близкими к нему элементами (натрием, литием, рубидием) оказались безрезультатными. Функция калия в растениях. как и других необходимых для них элементов, строго специфична.

Впервые предположение о необходимости калия растениям высказал Сосюр в 1804 г. на основании анализа золы растений, в которой всегда присутствовал калий. Затем Либих сделал заключение о необходимости применения калийных удобрений. Первые экспериментальные данные об абсолютной необходимости калия растениям были получены Сальм-Горстмаром в 1846 г. [5]

В растениях калий находится в ионной форме. До сих пор неизвестно ни одно органическое соединение, в состав которого входил бы этот элемент. Калий содержится в основном в цитоплазме и вакуолях клеток; в ядрах и пластидах он отсутствует. [1]

Около 80% калия находится в клеточном соке и может легко вымываться водой (например, дождями), особенно из старых листьев. В дневное время суток, когда в растениях активно протекают все биохимические процессы, калий, сохраняя легкую подвижность, все же удерживается в клетках освещенного растения. Ночью, когда процессы фотосинтеза прекращаются, часть калия может выделяться через корни, чтобы потом, с появлением первого солнечного луча, вновь поглощаться растением.

Примерно 20% калия удерживается в клетках растений в обменнопоглощенном состоянии коллоидами цитоплазмы и до 1% его необменно поглощается митохондриями. [5]

Молодые органы растений содержат калия в 3-5 раз больше, чем старые: его больше в тех органах и тканях, где интенсивно идут процессы обмена веществ и деления клеток. Поэтому калий иногда называют элементом молодости. Много калия в пыльце растений. В золе пыльцы кукурузы содержится до 35,5% калия, а кальция, магния, серы и фосфора, вместе взятых — лишь 24,7%. Легкая подвижность калия в растениях обусловливает его реутилизацию путем перемещения из старых листьев в молодые. Поэтому его распределение в растениях характеризуется базипептальным градиентом концентрации, то есть его содержание в листьях и частях стебля в пересчете на единицу сухого вещества возрастает снизу  вверх.

Физиологические функции калия весьма разнообразны. Установлено, что он стимулирует нормальное течение фотосинтеза, усиливает отток углеводов из пластинки листа в другие органы, а также синтез сахаров и высокомолекулярных углеводов — крахмала, целлюлозы, пектиновых веществ, ксиланов.

Калий усиливает накопление моносахаров в плодовых и овощных культурах, повышает содержание сахарозы в корнеплодах, крахмала в картофеле, утолщает стенки клеток соломины злаковых культур и повышает устойчивость хлебов к полеганию, а у льна и конопли улучшает качество волокна. [1]

Способствуя накоплению углеводов в клетках растений, калий увеличивает осмотическое давление клеточного сока и тем самым повышает холодоустойчивость и морозостойкость растений.

Накапливаясь в хлоропластах и митохондриях, калий стабилизирует их структуру и способствует образованию АТФ. Калий увеличивает гидрофильность коллоидов протоплазмы; при этом снижается транспирация, что помогает растениям лучше переносить кратковременные засухи.

Калий играет важную роль в синтезе и обновлении белков в растениях. При его недостатке синтез белков резко снижается и одновременно происходит распад старых белковых молекул. В растениях накапливаются растворимые азотные соединения (свободные аминокислоты). Улучшение калийного питания сопровождается повышением удельного веса белкового азота в растениях пшеницы. Усиливается также синтез амидов (аспарагина и глютамина). Положительное влияние калия на синтез белков связано, по-видимому, во-первых, с его влиянием на накопление и трансформацию углеводов (а последние, как известно, в процессе дыхания дают кетокислоты — материал для построения аминокислот) и, во-вторых, с усилением под влиянием калия деятельности ферментов, участвующих в синтезе белка. [5]

Калий поглощается растениями в виде катиона и, очевидно, в такой форме остается в клетке, образуя лишь слабые связи с ее веществами. В такой форме калий является основным противоионом для нейтрализации отрицательно заряженных компонентов клетки, а также создает разность электрических потенциалов между клеткой и средой. Возможно, именно в этом проявляется специфическая функция калия как незаменимого элемента питания.

Активизируя важнейшие биохимические процессы в клетках растений, калий повышает их устойчивость к различным заболеваниям как в течение вегетации, так и в послеуборочный период, значительно улучшает лежкость плодов и овощей. [1]

Содержание калия в клетках растений существенно выше, чем других катионов. Внутриклеточная концентрация калия в растениях во много раз (в 100-1000) превышает его концентрацию в почвенном растворе.

Критический период в потреблении калия растениями приходится на первые 15 дней после всходов. Период максимального потребления, как правило, совпадает с периодом интенсивного прироста биологической массы. У одних растений поступление калия заканчивается уже к фазе полного цветения (лен) или к цветению — началу молочной спелости (зерновые и зернобобовые). У других растений оно более растянуто и происходит в течение всего вегетационного периода (картофель, сахарная свекла, капуста).

В отличие от азота и фосфора, калия больше в вегетативных органах растений, чем в репродуктивных. Например, в соломе большинства злаков калия больше почти в 2 раза, а в стеблях кукурузы — в 5 раз, чем в зерне. Поэтому вынос К2О с нетоварной частью урожая, как правило, выше, чем с товарной (за исключением зернобобовых). [5]

Калиелюбивые культуры — сахарная и кормовая свекла, картофель, овощи — потребляют этот элемент гораздо больше, чем зерновые и зернобобовые культуры, лен и многолетние травы. Также много калия потребляет подсолнечник. В соотношении N : Р: К у калиефилов преобладает калий (2,5-4,5 : 1 : 3,5-6), а у зерновых культур — азот (2,5-3 : 1 : 1,5-2,2).

Недостаток калия вызывает множество нарушений обмена веществ у растений: ослабляется деятельность ряда ферментов, нарушается углеводный и белковый обмен, повышаются затраты углеводов на дыхание. В итоге продуктивность растений падает, качество продукции снижается. У зерновых образуется щуплое зерно, снижаются всхожесть и жизнеспособность семян. Нередко из-за ухудшения прочности соломины хлеба полегают. Уменьшается содержание крахмала в клубнях картофеля, сахарозы в корнеплодах сахарной свеклы, пектиновых веществ в плодах и ягодах. Урожайность зерновых, плодовых и овощных культур падает, снижается содержание витаминов в продукции. При дефиците калия возрастает поражаемость растений различными болезнями.

Внешне калийное голодание растений проявляется в первую очередь на листьях нижнего яруса: они преждевременно желтеют, начиная с краев; в дальнейшем края буреют, а затем отмирают и разрушаются, вследствие чего они выглядят, как обожженные. Это явление получило название «краевой ожог». Дефицит калия сказывается и на снижении тургора, листья вянут и поникают. Чаще всего недостаток калия проявляется в период интенсивного роста растений (в середине вегетации), когда его содержание в клетках растений снижается в 3-5 раз в сравнении с нормой. [1]

Сильнее от недостатка калия страдают калиелюбивые культуры.

Чрезмерное калийное питание растений также негативно отражается на их росте и развитии. Проявляется оно в возникновении между жилками листьев бледных мозаичных пятен, которые со временем буреют, а затем листья опадают. [5]

Таким образом, регулируя уровень калийного питания растений, можно в значительной мере влиять на их продуктивность и качество получаемой продукции.

ГЛАВА 2. ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ ПРОБЛЕМЫ ИССЛЕДОВАНИЯ

2.1. Круговорот веществ в природе

В отличие от энергии, которая однажды использованная организмом, превращается в тепло и теряется для экосистемы, вещества циркулируют в биосфере, что и называется биогеохимическими круговоротами. Из 90 с лишним элементов, встречающихся в природе, около 40 нужны живым организмам. Наиболее важные для них и требующиеся в больших количествах: углерод, водород, кислород, азот. Кислород поступает в атмосферу в результате фотосинтеза и расходуется организмами при дыхании. Азот извлекается из атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в неё другими бактериями. [2]

Круговороты элементов и веществ осуществляются за счёт саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными. В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот.

Существует закон глобального замыкания биогеохимического круговорота в биосфере, действующий на всех этапах её развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимического круговорота. Ещё большую роль на биогеохимический круговорот оказывает человек. Но его роль осуществляется в противоположном направлении. Человек нарушает сложившиеся круговороты веществ, и в этом проявляется его геологическая сила, разрушительная по отношению к биосфере на сегодняшний день. [3]

Когда 2 млрд. лет тому назад на Земле появилась жизнь, атмосфера состояла из вулканических газов. В ней было много углекислого газа и мало кислорода (если вообще был), и первые организмы были анаэробными. Так как продукция в среднем превосходила дыхание, за геологическое время в атмосфере накапливался кислород и уменьшалось содержание углекислого газа. Сейчас содержание углекислого газа в атмосфере увеличивается в результате сжигания больших количеств горючих ископаемых и уменьшения поглотительной способности «зелёного пояса». Последнее является результатом уменьшения количества самих зелёных растений, а также связано с тем, что пыль и загрязняющие частицы в атмосфере отражают поступающие в атмосферу лучи.

В результате антропогенной деятельности степень замкнутости биогеохимических круговоротов уменьшается. Хотя она довольно высока (для различных элементов и веществ она не одинакова), но тем не менее не абсолютна, что и показывает пример возникновения кислородной атмосферы. Иначе невозможна была бы эволюция (наивысшая степень замкнутости биогеохимических круговоротов наблюдается в тропических экосистемах – наиболее древних и консервативных). [3]

Таким образом, следует говорить не об изменении человеком того, что не должно меняться, а скорее о влиянии человека на скорость и направление изменений и на расширение их границ, нарушающее правило меры преобразования природы. Последнее формулируется следующим образом: в ходе эксплуатации природных систем нельзя превышать некоторые пределы, позволяющие этим системам сохранять свойства самоподдержания. Нарушение меры как в сторону увеличения, так и в сторону уменьшения приводит к отрицательным результатам. Например, избыток вносимых удобрений столь же вреден, сколь и недостаток. Это чувство меры утеряно современным человеком, считающим, что в биосфере ему всё позволено.

Надежды на преодоление экологических трудностей связывают, в частности, с разработкой и введением в эксплуатацию замкнутых технологических циклов. Создаваемые человеком циклы превращения материалов считается желательным устраивать так, чтобы они были подобны естественным циклам круговорота веществ. Тогда одновременно решались бы проблемы обеспечения человечества невосполнимыми ресурсами и проблема охраны природной среды от загрязнения, поскольку ныне только 1 – 2% веса природных ресурсов утилизируется в конечном продукте.

Теоретически замкнутые циклы превращения вещества возможны. Однако полная и окончательная перестройка индустрии по принципу круговорота вещества в природе не реальна. Хотя бы временное нарушение замкнутости технологического цикла практически неизбежно, например, при создании синтетического материала с новыми, неизвестными природе свойствами. Такое вещество вначале всесторонне апробируется на практике, и только потом могут быть разработаны способы его разложения с целью внедрения составных частей в природные круговороты.

Процессы фотосинтеза органического вещества из неорганических компонентов продолжается миллионы лет, и за такое время химические элементы должны были перейти из одной формы в другую. Однако этого не происходит благодаря их круговороту в биосфере. Ежегодно фотосинтезирующие организмы усваивают около 350 млрд т углекислого газа, выделяют в атмосферу около 250 млрд т кислорода и расщепляют 140 млрд т воды, образуя более 230 млрд т органического вещества (в пересчёте на сухой вес). [1]

Громадные количества воды проходят через растения и водоросли в процессе обеспечения транспортной функции и испарения. Это приводит к тому, что вода поверхностного слоя океана фильтруется планктоном за 40 дней, а вся остальная вода океана – приблизительно за год. Весь углекислый газ атмосферы обновляется за несколько сотен лет, а кислород за несколько тысяч лет. Ежегодно фотосинтезом в круговорот включается 6 млрд т азота, 210 млрд т фосфора и большое количество других элементов (калий, натрий, кальций, магний, сера, железо и др.). существование этих круговоротов придаёт экосистеме определённую устойчивость.

Различают два основных круговорота: большой (геологический) и малый (биотический). /ПРИЛОЖЕНИЕ 1/

Большой круговорот, продолжающийся миллионы лет, заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь. [2]

Малый круговорот (часть большого) происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самих этих растений, так и других организмов (как правило животных), которые поедают эти растения (консументы). Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов, доступных растениям и вовлекаемых ими в потоки вещества.

Круговорот химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биогеохимическим циклом. В такие циклы вовлечены практически все химические элементы и прежде всего те, которые участвуют в построении живой клетки. Так, тело человека состоит из кислорода (62,8%), углерода (19,37%), водорода (9,31%), азота (5,14%), кальция (1,38%), фосфора (0,64%) и ещё примерно из 30 элементов. [3]

2.2. Круговорот калия

Калий - химический элемент I группы с атомным номером 19 в периодической системе. Обозначается символом K (лат. Kalium), название происходит от лат. kalium, или англ. potash - поташ. Открыт и впервые выделен в чистом виде Г. Дэви в 1807 г. (Англия). [4]

Калий представляет собой серебристо-белый мягкий металл и принадлежит к семейству одновалентных щелочных металлов. Известны два изотопа калия: 39К и 41К.

В природе калий встречается только в соединениях с другими элементами. Например в морской воде, а также во многих минералах. Он очень быстро окисляется на воздухе и очень легко вступает в химические реакции, особенно с водой, образуя щелочь. Во многих отношениях химические свойства калия очень близки к натрию, но с точки зрения биологической функции и использования их клетками живых организмов они отличаются.

Калий содержится во всех растениях, особенно много калия в плодах. Природным источником калия являются минеральные соли.

Калий — один из основных биогенных элементов. Его круговорот в биоценозах весьма интенсивен. Содержание калия в биомассе различных биоценозов колеблется от 20 (пустыня) до 2000 кг/га (дубравы).

Замкнутый цикл круговорота питательных веществ в естественных биоценозах и аккумулирующая деятельность растений приводят к перераспределению калия в пределах корнеобитаемого слоя почвы и постепенному обогащению этим элементом ее верхних горизонтов. /ПРИЛОЖЕНИЕ 2/

В агроценозах круговорот и баланс калия зависят в основном от хозяйственной деятельности землепользователей: обеспеченности удобрениями, специализации хозяйств и др. [4]

Валовые запасы калия в почвах во много раз (в 5-50) выше, чем азота и фосфора. Этого нельзя не учитывать.

Часть калия теряется из корнеобитаемого слоя почвы за счет инфильтрации: на легких почвах около 5 %, на тяжелых — около 2 % от внесенного количества удобрений. На интенсивность этого процесса оказывают влияние гранулометрический состав почвы и ее водный режим, дозы удобрений, особенности культур.

Часть калия почвы теряется в результате водной и ветровой эрозии. По усредненным данным, это составляет 4-8 кг/га. Обычно считается, что расходные статьи потерь калия от эрозии компенсируются поступлением его с семенами (около 2 кг/га) и осадками (2-6 кг/га). [11]

Следует иметь в виду, что некоторая часть обменного калия может переходить в почве в фиксированное (необменно-поглощенное) состояние и тем самым изыматься из доступного для растений фонда калия. Установлено также, что в снабжении растений калием принимают участие не только пахотные, но и подпахотные горизонты почв. Тем самым расход калия из пахотного слоя уменьшается. Например, в опытах на дерновоподзолистых почвах подсолнечник и люпин в среднем около 32 % калия от общего его выноса потребляли из подпахотных горизонтов. [4]

Калий вместе с другими щелочными и щелочно-земельными химическими элементами аккумулировался в земной коре в процессе ее выплавления. Основная масса элемента включается в кристаллическое вещество на последних стадиях магматической кристаллизации. Калий входит в состав наиболее распространенных силикатов: полевых шпатов, амфиболов, пироксенов, слюд. В гранитном слое континентального блока земной коры средняя концентрация К2О равна 2,89 %, масса — 198×1015 т, в осадочном слое средняя концентрация К2О равна 2,00 %, масса — 38,5×1015 т.

При гипергенной перестройке кристаллохимических структур силикатов значительная часть калия остается в составе «переходных» новообразованных глинистых минералов, обладающих мутабильным составом, и освобождается постепенно, на протяжении длительного времени по мере образования конечных продуктов выветривания силикатов. Свободные ионы вовлекаются в водную миграцию, а также активно адсорбируются дисперсным минеральным веществом и поглощаются высшими растениями.

По этим причинам калий более прочно удерживается в пределах Мировой суши, чем кальций и натрий.

Калий играет важную роль в жизни растений и животных. Он принимает участие в фотосинтезе, влияет на обмен углеводов, азота, фосфора. В растениях он концентрируется в плодах, семенах и интенсивно растущих органах. При недостатке калия в почве урожай сельскохозяйственных культур резко снижается. В силу изложенного калий активно поглощается растениями и включается в биологический круговорот. Его кларк в живом веществе такой же высокий, как у азота, 0,3 %. Средняя концентрация калия в сухом веществе фитомассы суши оценивается от 0,7 % (Базилевич Н.И., 1974) до 1,4% (Боуэн X., 1966). В сухом веществе морских водорослей содержится 5,2 % калия (Боуэн X., 1966). Можно предполагать, что в растительности Мировой суши до активного воздействия на нее человека содержалось около 25×109 т калия, в сухой биомассе фотосинтетиков океана — 0,176×109 т. В мертвом органическом веществе педосферы средняя концентрация калия близка к 0,1—0,2%. Следовательно, содержащаяся в органическом веществе масса калия в несколько раз меньше, чем в живом веществе, и ориентировочно составляет около (5-10) ×109т. [7]

Часть освобождающегося при выветривании калия захватывается растительностью суши и частично сохраняется в мертвом органическом веществе. Некоторое количество солей калия и весьма крупные его массы, связанные в глинистых минералах, образуют главный запас этого элемента в педосфере. [4]

К сожалению, обоснованная оценка масс калия в настоящее время затруднительна. Несмотря на то что живое вещество суши и высокодисперсные продукты выветривания прочно удерживают значительную часть освобождающегося калия на суше, некоторая его часть вовлекается в водную миграцию и поступает в океан, где содержится 0,53×10'5 т элемента в форме растворенных ионов. В осадочной оболочке находится 38,2×1015 калия.

Если суммировать все количество калия, содержащееся в гранитном слое, осадочной толще, океане и других резервуарах, то оно составит 236,7×1015 т. Это значение должно характеризовать исходную массу калия в гранитном слое литосферы. Нетрудно подсчитать, что на протяжении фанерозоя в процессе развития биосферы из гранитного слоя было извлечено примерно 16 % калия. Вынос этого элемента осуществлялся с большим трудом, чем натрия, которого за тот же период времени было извлечено большее количество. [11]

В биологический круговорот на суше на протяжении года вовлекается около 1,8×109 т калия. В океане через многократно возобновляемую массу фотосинтетиков проходит около 121×107 т/год калия. Освобождающаяся из системы биологического круговорота на суше масса калия частично задерживается в мертвом органическом веществе и сорбируется педосферой, частично вовлекается в водную миграцию. Ежегодно с континентальным водным стоком выносится в океан более 61×106 т свободных ионов калия. Значительно большая масса элемента переносится в составе дисперсных, преимущественно глинистых частиц в форме взвесей — около 283×106 т/год.

Калий активно мигрирует в системе поверхность океана — атмосфера— поверхность океана в составе аэрозолей. Средняя концентрация элемента в океанических атмосферных осадках над океаном около 0,15 мг/л. На протяжении года с атмосферными осадками на поверхность океана выпадает примерно 65 • 106 т калия. Вместе с 20 % сухого осаждения это составляет 78×06 т калия, ежегодно вовлекаемых в обмен между океаном и атмосферой.

Концентрация ионов калия в континентальных атмосферных осадках в среднем близка к 0,7 мг/л, что составляет 0,05×109 т/год. С учетом 20 % сухого осаждения (0,01×109 т) в атмосферу с суши захватывается около 0,060×09 т ионов калия, а выпадает несколько больше за счет переноса океанических масс — 0,065×09 т. Значительное количество элемента выносится с суши в океан с пылью. Приняв концентрацию калия в пыли равной концентрации в глинистых отложениях, можно ориентировочно оценить пылевой вынос элемента в 0,043×109 т.

ГЛАВА 3. ПРИМЕНЕНИЕ КАЛИЯ В ПРОМЫШЛЕННОСТИ

У калия есть три основные сферы применения. Рассмотрим каждую по отдельности:

1. Сельское хозяйство

Добавление калия в почве имеет решающее значение, где значение рН щелочное. Калийные удобрения повышают рН в почве по этому не должны быть использованы с растениями, предпочитающими кислотный состав почвы, таких как гортензия, азалия и рододендрон. Превышение калия может вызвать проблемы для растений, предпочитающих кислые или сбалансированные рН почвы. В таких ситуациях имеет смысл делать тест почвы, чтобы увидеть, имеет ли почва дефицит калия, перед использованием калийных удобрений. Калий не двигается в почве более чем на дюйм, по этому важно разработать почву так, чтобы он попал в корневую зону растений. Среднее количество, на бедной калием почве - 1/4 до 1/3 фунта хлористого калия или сульфата калия на 100 квадратных футов. Таким образом необходима тщательная подготовка перед тем как начинать обрабатывать участок земли калийными удобрениями. Избыток калия накапливается в виде солей, которые могут быть вредными для корней. Ежегодные приложения компоста и навоза, как правило, являются достаточными, если почва не песчаная. Песчаные почвы бедны органическим веществом, и потребуется листовой опад и другие органические удобрения пропашные в почве, чтобы увеличить рождаемость. [6]

Калийные удобрения вносятся в почву напрямую в виде концентрата или в составе сложных удобрений (npk).

Калийные концентраты принято разделять на малоконцентрированные и концентрированные. Малоконцентрированные удобрения содержат до 30% калия. Наиболее известные виды простых удобрений: сильвинит, каинит и калимагнезия. Однако из-за низкой эффективности и ряда ограничений, связанных со сложным химическим составом, они в меньшей степени используются в сельском хозяйстве, чем концентрированные, доля калия в которых может достигать 60%.

Самый популярный вид калийных удобрений – хлористый калий, производимый из сильвинита – относится ко второй группе. Он представляет собой 95%- , 98 %- или 99% -ную кристал­лическую соль белого или розового цвета, содержание полезного вещества в которой составляет 57-60%. Своей популярностью он также обязан удобству в хранении и использовании. Хлористый калий почти не гигроскопичен, не слеживается, легко рассеивается и хорошо растворяется в воде. Кроме того, он подходит для всех видов культур и почв. Из концентратов также применяют сульфат калия, карбонат калия, калий-электролит, 30%- и 40%-ные калийные соли, получаемые путем смешивания хлорида калия с размолотым сильвинитом (40%) или каинитом (30%).[6]

Цементная пыль – бесхлорное калийное удобрение. Содержит от 10 до 35 % оксида калия. Отход производства цемента. Представляет собой смесь карбонатов, бикарбонатов, сульфатов и в небольшом количестве силикатов калия. Присутствуют гипс, оксид кальция, полуторные оксиды и некоторые микроэлементы. Применяется как основное удобрение на кислых почвах и под хлорофобные культуры. [9]

2. Промышленность

Жидкий при комнатной температуре сплав калия и натрия используется в качестве теплоносителя в замкнутых системах, например в атомных силовых установках на быстрых нейтронах. Кроме того, широко применяются его жидкие сплавы с рубидием и цезием. [10]

Соли калия широко используются в гальванотехнике, так как, несмотря на относительно высокую стоимость, они часто более растворимы, чем соответствующие соли натрия, и потому обеспечивают интенсивную работу электролитов при повышенной плотности тока. Цианид калия применяется при добыче золота и при нитроцементации стали.

Карбонат калия (поташ) используется при варке стекла. Перхлорат и хлорат (бертолетова соль) используются в производстве спичек, ракетных порохов, осветительных зарядов, взрывчатых веществ.

Бихромат (хромпик) - сильный окислитель, используется для приготовления "хромовой смеси" для мытья химической посуды и при обработке кожи (дубление). Также используется для очистки ацетилена на ацетиленовых заводах от аммиака, сероводорода и фосфина.

В золотодобыче применяется цианид калия (KCN) – как реагент для извлечения из руды серебра и золота. В нефтедобыче формиат калия используется в качестве жидкости для добуривания и реконструкции буровых скважин. В металлургии фтористый калий (KF) есть в составе металлургических флюсов; применяется также и для введения фтора в органические соединения. Калий в стекольном и мыловаренном производствах - здесь используется углекислый калий (К2CO3). В фотографии применяется бромистый калий (KBr) – он предохраняет негатив или отпечаток от вуали. В бытовой химии применяются фосфаты калия, в частности К4Р2О7 и К5Р3О10, – это компоненты моющих средств. Калий в атомной промышленности: тетрафторобромата калия (KBrF4) применяется для получения гексафторида урана при отделении урана от примесей редкоземельных элементов, а также для замены других фторокислителей при очистке и для получения фторидов таких металлов, как молибден, вольфрам, рений и других. Калий в пиротехнике и спичечном производстве: применяется хлорат калия (КClO3). [9]

3. Медицина

В медицине применяют несколько солей калия в качестве мочегонных и слабительных средств (азотно-натриевая соль, винно-калиевая, уксусно-калиевая соль); широко используются йодистый, бромистый, марганцевокислый калий, аспарагинат, оротат, хлорид калия и другие соединения. Кроме того входит в состав препаратов компенсирующих дефицит калия в организме. [10]

ЗАКЛЮЧЕНИЕ

В организме калий участвует во многих процессах и выполняет ряд функций, в числе которых:

Поддержание оптимального внутриклеточного давления за счет натриево-калиевый баланса, который обеспечивается этим элементом вместе с натрием.

Благодаря первому пункту, а также участию калия в образовании «топлива» из глюкозы обеспечивается правильное сокращение волокон мышц, включая сердечные.

Поддерживает жидкостный состав внутри клеток.

Поддерживает кислотно-щелочной баланс в жидких средах человеческого организма (входит в их состав).

Является катализатором в ряде органических реакций, включая те, которые способствует выносливости и насыщают мозг кислородом.

Участвует в нормальной функциональности почек, позволяет предотвратить отечность, зашлакованность.

Проводимость импульсов и нервная возбудимость также обеспечиваются калием.

Однако дефицит калия вызывает негативные последствия не только в организме человека или животных, но так же это касается и растений.

При его недостатке у растения прежде всего нарушается структура мембран хлоропластов — клеточных органелл, в которых проходит фотосинтез. Внешне это проявляется в пожелтении и последующем отмирании листьев. При внесении калийных удобрений у растений увеличивается вегетативная масса, урожайность и устойчивость к вредителям.

Таким образом получается, что калий растениям жизненно необходим.

Так же стоит заметить, что калий и его производные важный компонент в промышленном производстве (от с/х до медицины).

Стоит отметить, что перед нами стояла следующая цель, а именно охарактеризовать дефицит калия в природе. Исходя из всех доводов приведенных ранее, а так же причинно-следственной связью между недостатком калия и негативными проявлениями в живых организмах, необходимо отметить, что данный элемент является не заменимым, и последствия к которым приводит отсутствие данного вещества в организмах может оказаться фатальным для последних.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

Агротехнологии [Электронный ресурс]: открытый источник информации/ «Роль калия в жизни растений». Режим доступа к ресурсу: http://agrotehnology.com

Алексеенко В. А. Биосфера и жизнедеятельность./ В.А. Алексеенко, Л.П. Алексеенко – М.: Логос, 2013. - 212 c.

Герасимов И. П. Биосфера Земли./И.П. Герасимов – М.: Педагогика, 2012. - 891 c.

Добровольский В.В. Основы биогеохимии. Учебник для студ. высш. учеб, заведений./ В.В.Добровольский — М.: Академия, 2003. — 400 с.

МедиаСоль [Электронный ресурс]: открытый источник информации/ «Почему калий необходим для растений и как устранить его нехватку». Режим доступа к ресурсу: https://cemicvet.mediasole.ru

Пестициды [Электронный ресурс]: открытый источник информации/ «Калийные удобрения». Режим доступа к ресурсу: http://www.pesticidy.ru

ПраймКемикалсГрупп [Электронный ресурс]: открытый источник информации/ «Калий- металл, имеющий огромное биогенное значение». Режим доступа к ресурсу: https://pcgroup.ru

С-мед [Электронный ресурс]: открытый источник информации/ «Калий». Режим доступа к ресурсу: https://www.smed.ru

УралКалий [Электронный ресурс]: открытый источник информации/ «Применение калия». Режим доступа к ресурсу: http://infopotash.com

Химия [Электронный ресурс]: открытый источник информации/ «Применение калия». Режим доступа к ресурсу: http://4108.ru

Экология [Электронный ресурс]: открытый источник информации/ «Круговорот калия в природе и хозяйстве». Режим доступа к ресурсу: http://ru-ecology.info

ПРИЛОЖЕНИЯ

Приложение 1

Схема круговорота веществ

Приложение 2

Круговорот калия в наземных биосферах

Просмотров работы: 203