Типы хромосомных аберраций в эукариотической клетке. - Студенческий научный форум

XI Международная студенческая научная конференция Студенческий научный форум - 2019

Типы хромосомных аберраций в эукариотической клетке.

Сайдашева А.О. 1
1Тюменский Государственный Медицинский Университет
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

Хромосомные аберрации (хромосомные мутации, хромосомные перестройки) — изменения структуры хромосом. Классифицируют делеции (удаление участка хромосомы), инверсии (изменение порядка генов участка хромосомы на обратный), дупликации (повторение участка хромосомы), транслокации (перенос участка хромосомы на другую). Хромосомные перестройки носят, как правило, патологический характер и нередко приводят к гибели организма. Показано значение хромосомных перестроек в видообразовании и эволюции.

ВОЗНИКНОВЕНИЕ ХРОМОСОМНЫХ АББЕРАЦИЙ

В ходе кроссинговера образуются разрывы хромосом, которые затем репарируются. Нарушения процесса репарации могут привести к появлению хромосомных перестроек. Разрывы хромосом и, как следствие, образование перестроек происходят под действием различных мутагенных факторов: физической (ионизирующее излучение), химической или биологической (транспозоны, вирусы) природы. Также некоторые хромосомные перестройки (делеции) характерны для носителей специфических сайтов ломкости.

ДЕЛЕЦИИ

Различают терминальные (утрата концевого участка хромосомы) и интеркалярные (утрата участка на внутреннем участке хромосомы) делеции. Если после образования делеции хромосома сохранила центромеру, она аналогично другим хромосомам передается при делении, участки же без центромеры как правило утрачиваются. При конъюгации гомологов во время кроссинговера у нормальной хромосомы на месте делеции в мутировавшей хромосоме образуется т. н. делеционная петля, которая компенсирует отсутствие делетированного участка.

Исследованные делеции редко захватывает протяженные участки хромосом, обычно такие аберрации летальны. Самым хорошо изученным заболеванием, обусловленным делецией, является синдром кошачьего крика, описанный в 1963 году Джеромом Леженом. В его основе лежит делеция небольшого участка короткого плеча 5 хромосомы. Для больных характерен ряд отклонений от нормы: нарушение функций сердечно-сосудистой, пищеварительной систем, недоразвитие гортани (с характерным криком, напоминающим кошачье мяуканье), общее отставание развития, умственная отсталость, лунообразное лицо с широко расставленными глазами. Синдром встречается у 1 новорожденного из 50000.

Другой интересной делецией является делеция в гене, кодирующем рецептор CCR5. Этот рецептор используется вирусом иммунодефицита человека (ВИЧ) для распознавания своей цели — Т-лимфоцитов. Продукта гена с делецией получил название CCR5-Δ32, этот вариант CCR5 не узнается ВИЧ, и носители такой мутации к ВИЧ невосприимчивы (это порядка 10 % европейцев).

ДУПЛИКАЦИИ

Дупликации появляются в результате неравного кроссинговера (в этом случае второй гомолог несет делецию) или в результате ошибки в ходе репликации. При конъюгации хромосомы с дупликацией и нормальной хромосомы как и при делеции формируется компенсационная петля.

Практически у всех организмов в норме наблюдается множественность генов, кодирующих рРНК (рибосомальную РНК). Это явление назвали избыточностью генов. Так у E. coli на рДНК (ДНК, кодирующее рРНК) приходится 0,4 % всего генома, что соответствует 5-10 копиям рибасомальных генов.

Другой пример дупликации — мутация Bar у Drosophila, обнаруженная в 20-х годах XX века Т. Морганом и А. Стертевантом. Мутация обусловлена дупликацией локуса 57.0 X-хромосомы. У нормальных самок (B+/B+) глаз имеет 800 фасеток, у гетерозиготных самок (B+/B) глаз имеет 350 фасеток, у гомозигот по мутации (B/B) — всего 70 фасеток. Обнаружены также самки с трижды повторенным геном — double Bar (BD/B+).

В 1970 году Сусумо Оно в монографии «Эволюция путем дупликации генов» разработал гипотезу об эволюционной роли дупликаций, поставляющих новые гены, не затрагивая при этом функций исходных генов. В пользу этой идеи говорит близость ряда генов по нуклеотидному составу, кодирующих разные продукты. Это трипсин и хемотрипсин, гемоглобин и миоглобин и ряд других белков.

ИНВЕРСИИ

Различают парацентрические (инвертированный фрагмент лежит по одну сторону от центромеры) и перицентрические (инвертированный фрагмент лежит по разные стороны от центромеры) инверсии. При инверсиях не происходит потери генетического материала, потому как таковые инверсии как правило не влияют на фенотип, но если в инверсионной гетерозиготе (то есть организме, несущем как нормальную хромосому, так и хромосому с инверсией) происходит кроссинговер, то существует вероятность формирования аномальных хроматид. В случае парацентрической инверсии образуется одна нормальная и одна инвертированная (фенотипически нормальная) хроматиды, дицентрическая хроматида с дупликацией и делецией (при расхождении хроматид она обычно разрывается на две) и ацентрическая хроматида с дупликацией и делецией (обычно утрачивается). В случае перицентрической инверсии образуется одна нормальная и одна инвертированная хроматиды, а также две хроматиды с дупликацией и делецией. Гаметы, несущие дефектные хромосомы, обычно не развиваются или погибают на ранних этапах эмбриогенеза. Но гаметы с инвертированной хромосомой развиваются в организмы, 50 % гамет которых нежизнеспособны. Т.о. мутация сохраняется в популяции.

У человека наиболее распространенной является инверсия в 9 хромосоме, не вредящая носителю, хотя существуют данные, что у женщин с этой мутацией существует 30 % вероятность выкидыша.

ТРАНСЛОКАЦИИ

Существует несколько форм транслокации:

• собственно транслокация (перенос участка с одной негомологичной хромосомы на другую);

• реципрокная транслокация (две негомологичные хромосомы обмениваются участками);

• робертсоновская транслокация (две негомологичные хромосомы объединяются в одну);

• транспозиция (перенос участка хромосомы на другое место на той же хромосоме).

Транслокация, реципрокная транслокация и транспозиция, которые не сопровождаются утратой генетического материала (т. н. сбалансированные транслокации), часто не проявляются фенотипически. Однако, как и в случае с инверсиями, в процессе гаметогенеза часть сформированных гамет несет летальные аберрации. К примеру, в случае реципрокной транслокации обычно выживает не более 50 % зигот.

Примером транслокации может служить т. н. семейный синдром Дауна. При этом заболевании у одного из родителей обнаруживается фенотипически непроявляющаяся транслокация 21 хромосомы на 14. У такого человека с вероятностью в 1/4 образуются гаметы с двумя 21 хромосомами (одна свободная и одна траслоцированная). При слиянии такой гаметы с нормальной образуется трисомик по 21 хромосоме.

Другой пример — транслокация типа Philadelphia, транслокация между 9 и 22 хромосомами. В 95 % случаев эта мутация является причиной одной из форм хронической лейкемии (chronic myelogenous leukemia).

Робертсоновские транслокации, возможно, являются причиной различий между числом хромосом у близкородственных видов. Существуют данные, что два плеча 2-й хромосомы человека соответствуют 12 и 13 хромосомам шимпанзе. Возможно, 2-я хромосома образовалась в результате робертсоновской транслокации двух хромосом обезьяноподобного предка человека. Таким же образом объясняют тот факт, что различные виды дрозофилы имеют от 3 до 6 хромосом.

Робертсоновские транслокации привели к появлению в Европе нескольких видов-двойников (хромосомные расы) у мышей группы видов Mus musculus, которые, как правило, географически изолированы друг от друга. Набор и, как правило. экспрессия генов при робертсоновских транслокациях не изменяются, поэтому виды практически неотличимы внешне. Однако они имеют разные кариотипы, а плодовитость при межвидовых скрещиваниях резко понижена.

ВСЕ ХРОМОСОМНЫЕ ПЕРЕСТРОЙКИ МОГУТ БЫТЬ ПОДРАЗДЕЛЕНЫ НА:

• сбалансированные

• несбалансированнные

При сбалансированных перестройках изменяется порядок сегментов (локусов, генов) на хромосоме, но не происходит количественных нарушений генетического материала. (Например, инверсия и взаимные транслокации).

При возникновении несбалансированных перестроек всегда имеет место нарушение «дозы» определенных сегментов хромосомы. Это сопровождается изменением баланса генов и манифестацией той или иной формы хромосомной болезни.

ПРИМЕРЫ ЗАБОЛЕВАНИЙ:

СИНДРОМ ВОЛЬФА-ХИРШХОРНА (делеция короткого плеча хромосомы 4)

• Популяционная частота - 1:100000.

• обусловлен делецией сегмента короткого плеча хромосомы 4.

• Клинически характеризуется мВПР (микроцефалия, клювовидный нос, гипертелоризм, эпикант, аномальные ушные раковины, расщелины верхней губы и нёба, аномалии глазных яблок, антимонголоидный разрез глаз, маленький рот, пороки внутренних органов) с последующей резкой задержкой физического и психомоторного развития.

• Жизнеспособность детей резко снижена. Большинство умирают в возрасте до 1 года.

СИНДРОМ КОШАЧЬЕГО КРИКА (делеция короткого плеча хромосомы 5)

• Популяционная частот 1:45000 – 1:50000.

• Синдром обусловлен делецией короткого плеча 5 хромосомы.

• Кариотип: 46,ХХ, del 5p или 46,XY,del 5p.

• Специфический плач, напоминающий кошачье мяуканье или крик. Он обусловлен изменением гортани (сужение, мягкость хрящей, уменьшение надгортанника, необычная складчатость слизистой оболочки). С возрастом этот симптом исчезает.

СИНДРОМ ЧАСТИЧНОЙ ТРИСОМИИ ПО КОРОТКОМУ ПЛЕЧУ ХРОМОСОМЫ 9

• Синдром частичной трисомии по короткому плечу хромосомы 9 • • (9 р+) - наиболее частая форма частичных трисомий (опубликовано около 200 сообщений о таких больных), синдром клинически выражен.

• Клиническая картина многообразна и включает внутриутробные и постнатальные нарушения развития: задержку роста, умственную отсталость, микробрахицефалию, антимонголоидный разрез глаз, энофтальм (глубоко посаженные глаза), гипертелоризм, округлый кончик носа, опущенные углы рта, низко расположенные оттопыренные ушные раковины с уплощенным рисунком, гипоплазию (иногда дисплазию) ногтей. Врожденные пороки сердца обнаружены у 25% больных.

СИНДРОМ ПРАДЕРА-ВИЛЛИ И АНГЕЛЬМАНА

• у 70% больных наблюдается частичная делеция длинного плеча 15-й хромосомы (отцовская аллель), у 5% заболевание связано с другими перестройками хромосомы 15.

• Характерные внешние признаки: череп со сдавленной с боков лобной частью, миндалевидный разрез глаз, опущенные углы рта, маленькие стопы и кисти)

Наблюдается отставание умственного развития, поведенческие нарушения, задержка физического развития, низкорослость, гипотония, гипогонадизм.

СИНДРОМ АНГЕЛЬМАНА

Синдром Ангельмана – генетическое заболевание, для которого характерны психическая задержка развития, судорожные припадки, нарушения сна, хаотичные движении рук, частый смех и практически постоянная улыбка.

• Встречаемость 1:20 000

• Кариотип больных с синдромом Ангельмана — 46 XX или XY, 15р−.

• Продолжительность жизни 20-50 лет

СПИСОК ЛИТЕРАТУРЫ

1. Курчанов, Н. А. Генетика человека с основами общей генетики / Н.А. Курчанов. - М.: СпецЛит, 2009.

2. Гнатик, Е. Н. Генетика человека. Былое и грядущее / Е.Н. Гнатик. - М.: ЛКИ, 2010

3. Баранов, В. С. Цитогенетика эмбрионального развития человека / В. С. Баранов, Т. В. Кузнецова. -Спб. : Изд-во Н-Л, 2007. - 640 с.

4. Клаг У., Каммингс М. Основы генетики — М.: Мир, 2007.

5. Биология. Книга 1. Под ред. акад. РАМН Ярыгина В. Н. — М.: Высшая школа, 2003.

6. Грин Н. и др., Биология — М.: Мир, 1990. Т. 1-3.

7. Жимулев И. Ф. Общая и молекулярная генетика. — Новосибирск: Изд-во НГУ, 2003.

8. Р.В. Тузова, Н.А. Ковалев. Молекулярно-генетические механизмы эволюции органического мира. Генетическая и клеточная инженерия. – Минск: Беларусь, 2010

Просмотров работы: 26