Сверхпроводящие линии связи. - Студенческий научный форум

XI Международная студенческая научная конференция Студенческий научный форум - 2019

Сверхпроводящие линии связи.

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Целью данной работы является исследование характеристик сверхпроводящие линии связи и выявление зависимостей проводимости пропускаемого электрического тока. Ряд металлов и сплавов обладают особыми свойствами - сверхпроводимостью при температурах, близких к абсолютному нулю (-273). Это явление открывает широкие возможности создания линий передачи электромагнитной энергии с весьма малым затуханием. Достаточно сказать, что сопротивление проводников при сверхнизких температурах может быть меньше 10-23 Ом/см, что в 1017 раз меньше, чем сопротивление меди при температуре 20C. Затухание кабеля в режиме сверхпроводимости меньше, чем затухание в обычных условиях в 106/108 раз.

Изготовление экспериментального образца СПЭИК, получившего наименование ГСПК-50 (гибкий сверхпроводящий кабель длиной 50 м), началось в-1975 г. Он был сделан следующим образом (рис. 5.1). На сверхпроводящий силовой кабель были уложены три высокочастотные сверхпроводящие пары (кабель связи): две для связи и одна для телеметрии. Затем на комбинированный (силовой и связной) сверхпроводящий кабель наложили   криогенную   оболочку.

Наряду с малыми сопротивлением и затуханием сверхпроводники при низких температурах обладают еще таким замечательным свойством, как полное экранирование электромагнитного поля. Это обусловлено тем, что в режиме сверхпроводимости поле в толщу металла почти не проникает. Кроме того, при низких температурах существенно снижаются потери в диэлектрике, в силу чего ЭМ энергия по такому кабелю проходит с весьма малыми потерями и затуханием.

Эффект сверхпроводимости объясняется следующим образом. Электрический ток в металле – это поток электронов через кристаллическую решетку проводника. С увеличением температуры возрастает хаотическое движение атомов решетки, происходит столкновение электронов с ними и увеличивается сопротивление проводника. При уменьшении температуры наоборот, колебание атомов решетки уменьшается, и создаются более благоприятные условия прохождения потока электронов и, наконец, при температурах, близких к абсолютному нулю, колебания практически прекращаются и проявляется эффект сверхпроводимости. Для каждого металла и сплава существует своя критическая температура перехода ТК, при которой возникает явление сверхпроводимости. Причем сверхпроводимость проявляется и исчезает довольно резко скачком при достижении критической температуры.

Рис.1

Однако свойством сверхпроводимости обладают далеко не все металлы. Например, такие лучшие электрические проводники, как медь, серебро, золото, не становятся сверхпроводниками и во всем диапазоне температур не наблюдается резкого скачка изменения сопротивления. На рис.1 изображены характерные зависимости.

Физическая среда передачи данных может представлять собой кабель (набор проводов, изолированных и защищённых оболочкой). Кабель имеет физические разъёмы.

Кроме кабеля физической средой передачи данных  может быть земная атмосфера или космическая пространство, через которые распространяются электромагнитные волны.

В зависимости от среды передачи данных линии связи можно разделить на три группы:

Проводные (воздушные) линии связи — это провода без изолирующих и экранирующих оплёток, проложенные между столбами и висящие в воздухе. Они проводят телефонные и телеграфные сигналы. Скоростные свойства и помехозащищённость низкие. При отсутствии других каналов связи по ним передаются и компьютерные данные;

Радиоканалы земной и спутниковой связи — образуются с помощью передатчика и приёмника радиоволн. Может использоваться для организации сетей в пределах больших помещений типа ангаров или павильонов, там, где использование обычных линий связи затруднено или нецелесообразно.

Кабельные — состоят из проводников, заключённых в несколько слоёв изоляции. В компьютерных сетях используют три основных типа кабеля:

а) Витая пара (скрученные пары медных проводников).

Рис. 2.

Витая пара (Twisted pair) имеет до 4-х изолированных проводников в одной металлической оплётке или без неё. Каждая пара проводов для защиты от помех от соседних пар проводов и внешних источников скручивается с различным шагом – количеством витков на дюйм. Каждая пара состоит из провода (Ring) и провода (Tip). Каждая пара в оболочке имеет свой номер. Таким образом каждый провод можно идентифицировать как Ring1,Tip1, Ring2, Tip2.

Скорость передачи до 100мб/с. Кабель легко наращивается, однако отличается слабой устойчивостью к помехам, например, электронные шумы, создаваемые люминесцентными светильниками и движущимися лифтами.

Рис. 3.

Различают два типа данного кабеля:

1) Экранированная (защищенная) витая пара — STP. Защита может осуществляться экранами двух типов:

- фольга;

-  металлическая сетка.

Кабель, экранированный фольгой, тоньше, легче и дешевле, но менее эффективный, его легче повредить. Металлическая сетка — более эффективный экран, но она увеличивает вес, диаметр и стоимость кабеля.

2) Неэкранированная витая пара —UTP. Кабель UTP разделён на 5 категорий: чем выше категория кабеля, тем более эффективно он может передавать данные. Основное отличие категорий – кол-во витков каждой пары проводов.

б) Коаксиальный кабель;

Коаксиальный кабель состоит из двух проводников, окружённых изолирующими слоями:

1) центральный провод;

2) изолятор центрального провода;

3) экранирующий проводник;

4) внешний изолятор и защитная оболочка.

Рис.4.

Различают два вида коаксиальных проводов:

а) толстый коаксиальный кабель (~10мм в диаметре), который обеспечивает хорошие механические и электрические характеристики. Однако с ним связана трудность монтажа, так как он плохо гнётся; 

б)тонкий коаксиальный кабель (~5мм в диаметре) обладает худшими, чем толстый характеристиками, но удобен в монтаже, хотя часто ломается в местах разъёма.

в) Оптоволокно.

Оптоволоконный кабель – тонкие (от 5 до 15 микрон) волокна (стеклянные провода), по которым распространяются сигналы в виде световых импульсов.

Волоконно-оптические кабели обеспечивает наивысшую скорость передачи; они более надёжны, так как не подвержены потерям информации из-за электромагнитных помех. Являются наиболее перспективным типом кабельного соединения, так как имеют высокую скорость передачи (до 10 гигабит/с).

Недостатки оптоволокна в основном связаны со стоимостью его прокладки и эксплуатации, которые намного выше, чем для медной среды передачи данных.

Рис. 5.

Оптоволоконный кабель состоит из сердечника, сделанного из стекла (кварца), оболочки, окружающей сердечник, затем следует слой пластиковой прокладки и волокна из кевлара для придания прочности. Вся эта структура помещена внутрь тифлоновой или поливинилхлоридной «рубашки».

Существует два типа оптоволоконных кабелей:

1) одномодовое;

2) многомодовое.

Основное отличие между ними заключается в толщине сердечника и оболочки. Одномодовый световод обычно имеет толщину порядка 8,3/125 мкр (сердечник/оболочка), многомодовый – 62,5/125 мкр.

Световой луч, распространяющийся по тонкому сердечнику одномодового кабеля, отражается от оболочки не так часто, как это происходит во многомодовом кабеле. Сигнал, передаваемый одномодовым кабелем, генерируется лазером, и представляет собой волну только одной длины, в то время как многомодовые сигналы, генерируемые световодом, переносят волны различной длины. Эти качества позволяют одномодовому кабелю функционировать с большей пропускной способностью и преодолевать расстояния в 50 раз длиннее по сравнению со многомодовым.

Вывод:

В результате по разработкам силовых сверхпроводящих кабелей на основе сверхпроводников Россия вышла на передовые позиции в мире. Накоплен многогранный опыт, создан и отработан ряд передовых технологий по изготовлению сверхпроводящих кабельных линии.

Литература

Сверхпроводящие линии связи [Электронный реcурc]. – Режим доcтупa: http://mirznanii.com/a/122671/sverkhprovodyashchie-kabeli – зaгл. c экрaнaaтa обрaщения: 25.12.2018)

Создание сверхпроводящие линии связи [Электронный реcурc]. – Режим доcтупa: http://www.kp-info.ru/images/File/2010%202%203-10.pdf – зaгл. c экрaнaaтa обрaщения: 25.12.2018)

Классификация сверхпроводящих линий связи [Электронный реcурc]. – Режим доcтупa: https://works.doklad.ru/view/m9j2duEmVrY/all.html – зaгл. c экрaнaaтa обрaщения: 25.12.2018)

Гроднев И. И., Левинов К. Г., Гальперович Д. Я. Сверхпроводящие кабельные линии связи. — Электросвязь, 1974г.

Просмотров работы: 2