Совершенно очевидно, что качество прямогонных нефтяных дистиллятов напрямую зависит от химического состава перерабатываемой нефти. Причем практика показывает, что кроме содержания общей серы в нефти, весьма важной является информация о содержании меркаптановой серы. В отдельных случаях, при повышенном содержании в нефти соединений хлора или азота, необходимо детальное выяснение типа и природы гетероатомных соединений.
Вовлечение в переработку газового конденсата с высоким содержанием меркаптанов способно вызвать нарушение технологического процесса блока гидроочистки установки риформинга. А наличие летучих хлорорганических соединений, привнесенных в процессе нефтедобычи, обусловливают повышенную коррозию оборудования. Избыточное содержание азотистых компонентов в прямогонных бензиновых и дизельных фракциях приводит к снижению активности катализаторов при гидроочистке данных фракций [5].
Из вышесказанного вытекает актуальность исследований по определению качественного состава и концентраций S-, Cl-, N-содержащих соединений в нефтях как основы для создания усовершенствованной системы качества. По ГОСТ Р 51858 нефти по количественному содержанию серы делятся на 3 класса:
Класс 1 - малосернистые, с содержанием не более 0,6% серы;
Класс 2 - сернистые, с содержанием от 0,61 до 1,8% серы;
Класс 3 - высокосернистые, содержащие более 1,8% серы [1]
В не меньшей степени, чем сернистые, азотсодержащие гетероциклические соединения также относятся к нежелательным компонентам нефти. Указанные S,N-содержащие соединения осложняют проведение многих технологических процессов и ухудшают качество нефтепродуктов, способствуют стабилизации водонефтяных эмульсий, придают продуктам повышенную коррозионную активность, низкую термическую и термоокислительную стабильность. [2].
В настоящее время Российские нефтеперерабатывающие заводы перешли к производству моторных топлив, по остаточному содержанию серы соответствующих новым российским и европейским стандартам [3]. Поскольку существующие марки российских катализаторов не позволяют резко снизить содержание серы в получаемых продуктах без ужесточения условий проведения процесса гидроочистки, чрезвычайно актуальной задачей является создание новых катализаторов, позволяющих получать моторные топлива с низким остаточным содержанием серы при условиях проведения процессов, осуществимых на российских нефтеперерабатывающих заводах без их коренной реконструкции. Известны различные нанесенные катализаторы гидроочистки углеводородного сырья, однако общим недостатком для них является высокое остаточное содержание серы в получаемых продуктах.
В связи с актуальностью данной проблемы все больше исследователей пытаются решить проблему серосодержащих соединений углеводородного сырья. К числу многих запатентованных изобретений относятся катализаторы гидроочистки для получения нефтепродуктов с низким содержанием серы.
Рассмотрим первый патентRU 2 626 398 C1
Изобретение относится к катализаторам получения нефтяных дистиллятов с низким содержанием серы. Описан катализатор, содержащий, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 33,0-43,0%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°. Катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 7-12 нм и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. После сульфидирования по известным методикам катализатор содержит, мас. %: Мо - 10,0-14,0; Со - 3,0-4,3; S - 6,7-9,4; носитель - остальное.
Предлагаемое изобретение решает задачу создания улучшенного катализатора гидроочистки, характеризующегося:
1. Оптимальным химическим составом катализатора, носитель которого содержит в качестве компонента, определяющего каталитические свойства борат алюминия Al3BO6 со структурой норбергита с концентрацией 5,0-25,0 мас. %. Данный компонент обеспечивает уровень кислотности, способствующий минимизации нежелательного химического взаимодействия между активными металлами (Со и Мо) и носителем, и селективному получению наиболее активного в гидроочистке сульфидного компонента - Co(Ni)MoS фазы типа II.
2. Оптимальными текстурными характеристиками, обусловленными присутствием в катализаторе частиц бората алюминия Al3BO6 со структурой норбергита, представляющего собой частицы с размерами от 10 до 200 нм, способствующими получению носителя и катализатора, объем, и размер пор которого обеспечивают доступ всех подлежащих превращению молекул сырья к активному компоненту.
Технический результат - получение катализатора, имеющего максимальную активность в целевых реакциях, протекающих при гидроочистке углеводородного сырья.
Задача решается катализатором гидроочистки углеводородного сырья, который содержит, мас. %: [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] 33,0-43,0%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. При этом входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8 [4].
Рассматривая второй патент RU 2 622 040 C1, в котором изобретение относится к способам гидроочистки дизельных топлив, основанным на использовании регенерированных катализаторов гидроочистки. Описан способ гидроочистки дизельного топлива при температуре 340-390°C, давлении 3-9 МПа, объемном расходе сырья 1,0-2,5 ч-1, объемном отношении водород/ сырье 300-600 м3/м3 в присутствии регенерированного катализатора, имеющего объем пор 0,3-0,8 мл/г, удельную поверхность 150-280 м2/г, средний диаметр пор 6-15 нм, включающего в свой состав молибден, кобальт, серу и носитель, при этом молибден и кобальт содержатся в катализаторе в форме смеси комплексных соединений Co(C6H6O7), H4[Mo4(C6H5O7)2O11], H3[Co(OH)6Mo6O18], сера содержится в форме сульфат-аниона SO42-, в следующих концентрациях, мас. %: Co(C6H6O7) - 5,1-18,0; H4[Mo4(C6H5O7)2O11] - 7,5-15,0; H3[Co(OH)6Mo6O18] - 4,3-19,0; SO42-- 0,5-2,30; носитель - остальное, при этом цитраты кобальта могут быть координированы к цитрату молибдена H4[Mo4(C6H5O7)2O11] и к 6-молибдокобальтату H3[Co(OH)6Mo6O18].
Изобретение решает задачу создания улучшенного способа гидроочистки дизельного топлива, характеризующегося низким содержанием серы в получаемых дизельных топливах, достигаемым за счет использования регенерированного катализатора.
Технический эффект предлагаемого способа гидроочистки дизельного топлива складывается из следующих составляющих:
1. Химический состав используемого для гидроочистки реактивированного катализатора и его текстура обеспечивают максимальную активность в целевых реакциях, протекающих при гидроочистке углеводородного сырья. Наличие в составе катализаторов цитратных комплексов кобальта и молибдена, а также биметаллического 6-молибдокобальтат H3[Co(OH)6Mo6O18] в заявляемых концентрациях, селективно превращающихся в наиболее активный компонент катализа, обуславливает оптимальную поверхностную концентрацию активного компонента и оптимальную морфологию частиц.
2.Гидроочистка дизельного топлива в присутствии регенерированного катализатора, имеющего объем пор 0,3-0,8 мл/г, удельную поверхность 150-280 м2/г, средний диаметр пор 6-15 нм, обеспечивает хороший доступ подлежащих превращениям молекул сырья к активному компоненту и способствует достижению пониженного содержания серы в продуктах.
3. Заявляемые условия проведения процесса гидроочистки дизельного топлива в присутствии регенерированного катализатора позволяют получать дизельное топливо с содержанием серы не более 10 ppm [4].
Третий патент RU 2 541 315 C1 относится к очистке моторных топлив от серосодержащих соединений. Изобретение касается способа очистки моторных топлив, включающего экстракцию серосодержащих соединений из топлива в ионную жидкость, парциальное окисление экстрагированных серосодержащих соединений под действием катализатора в спиртово-щелочном растворе или в кислом водном растворе, отделение углеводородной фракции, регенерацию ионной жидкости. Используют ионную жидкость, состоящую из: катиона, выбранного из группы алкилимидазолия, алкилпиридиния, полиалкиламмония, алкилпиперидиния, и аниона, выбранного из группы тетрафторбората, гексафторфосфата, трифторметилсульфоната (трифлата), бис(трифторметилсульфонил)имида, нитрата, ацетата, хлорида, гидросульфата, ионную жидкость берут в объемном соотношении 1:10-1:5 к очищаемому топливу, используют катализатор в растворе, содержащий, по меньшей мере, один металл и/или оксид металла в высшей степени окисления с концентрацией от 1,0 до 4,0 ммоль/л, металл выбран из группы переходных металлов, включающих молибден, ванадий, вольфрам, марганец, хром, механическое перемешивание осуществляют в замкнутом сосуде при температуре, не превышающей температуру кипения топлива.
Задачей настоящего изобретения является создание эффективного способа очистки моторных топлив, включающего экстракцию серосодержащих соединений из топлива в ионную жидкость, их парциальное окисление под действием катализатора и достижение, таким образом, более полного удаления серосодержащих органических веществ.
Технический результат - повышение степени очистки моторных топлив, причем экстрагент (ИЖ) способен работать без снижения активности по отношению к сераорганическим соединениям до 20-30 циклов, и еще дополнительно 10-15 циклов после регенерации [4].
Из выше сказанного можно сделать вывод, что в настоящее время для промышленной очистки жидких углеводородов нефти наиболее часто применяется гидроочистка. Этот метод, как известно, обеспечивает практически полное удаление меркаптанов, сульфидов и дисульфидов из жидких углеводородов. Сейчас в основном ведутся работы, направленные на улучшение свойств катализаторов.
Список используемых источников
ГОСТ 9965-76 «Нефть для нефтеперерабатывающих предприятий. Технические условия», дата обращения 07.03.2018
Шабалина Т.Н., Бадыштова К.М., Елашева О.М. и др. Прогнозирование потенциала светлых фракций и содержания в них серы // Химия и технология топлив и масел. - 1999. - №3. - С.6-7; Герасимова Н.Н., Коваленко Е.Ю., Сергун В.П. и др. Распределение и состав гетероорганических соединений в нефтях из Верхнеюрских отложений Западной Сибири // Нефтехимия. - 2005. - Т.45. - №4. - С.251, дата обращения 07.03.2018
ГОСТ Р 52368-2005. (ЕН 590-2004). Топливо дизельное ЕВРО. Технические условия; ГОСТ Р 51866-2002. (ЕН 228-1999). Бензин неэтилированный.].
http://fips.ru дата обращения, 07.03.2018
Сираев И.Н., Улендеева А.Д., Парфенова М.А. и др. Сераорганические соединения нефтей различного типа // Нефтепереработка и нефтехимия. – 2002, дата обращения 07.03.2018