ЭВОЛЮЦИЯ ГЕНОМА - Студенческий научный форум

X Международная студенческая научная конференция Студенческий научный форум - 2018

ЭВОЛЮЦИЯ ГЕНОМА

Горбачева О.М. 1
1Тюменский государственный медицинский университет
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Введение

Актуальность

Общие принципы организации наследственного материала, представленного нуклеиновыми кислотами, а также принципы записи генетической информации у про- и эукариот свидетельствуют в пользу единства их происхождения от общего предка, у которого уже была решена проблема самовоспроизведения и записи информации на основе репликации ДНК и универсальности генетического кода. Однако геном такого предка сохранял большие эволюционные возможности, связанные с развитием надмолекулярной организации наследственного материала, разных путей реализации наследственной информации и регуляции этих процессов.

Цель: изучить возможные механизмы эволюции генома про- и эукариот, роль подвижных элементов и горизонтального переноса в эволюции.

Задачи:

  1. Рассмотреть теории генома предполагаемого предка про-и эукариот.

  2. Рассмотреть механизм эволюции генома прокариот.

  3. Рассмотреть механизм эволюции эукариотического генома.

  4. Изучить роль подвижных генетических элементов.

  5. Изучить роль горизонтального переноса генетического материала в эволюции генома.

Геном предполагаемого общего предка про- и эукариот

Существует предположение, что в процессе возникновения жизни на Земле первым шагом явилось образование самовоспроизводящихся молекул нуклеиновых кислот, не несущих первоначально функции кодирования аминокислот в белках.

Благодаря способности к самовоспроизведению эти молекулы сохранялись во времени. Таким образом, первоначальный отбор шел на способность к самосохранению через самовоспроизведение. В соответствии с рассмотренным предположением позднее некоторые участки ДНК приобрели функцию кодирования, т.е. стали структурными генами, совокупность которых на определенном этапе эволюции составила первичный генотип. Экспрессия возникших кодирующих последовательностей ДНК привела к формированию первичного фенотипа, который оценивался естественным отбором на способность выживать в конкретной среде.

Важным моментом в рассматриваемой гипотезе является предположение о том, что существенным компонентом первых клеточных геномов была избыточная ДНК, способная реплицироваться, но не несущая функциональной нагрузки в отношении формирования фенотипа. Предполагают, что разные направления эволюции геномов про- и эукариот связаны с различной судьбой этой избыточной ДНК предкового генома, который должен был характеризоваться достаточно большим объемом. Вероятно, на ранних стадиях эволюции простейших клеточных форм у них еще не были в совершенстве отработаны главные механизмы потока информации (репликация, транскрипция, трансляция). Избыточность ДНК в этих условиях создавала возможность расширения объема кодирующих нуклеотидных последовательностей за счет некодирующих, обеспечивая возникновение многих вариантов решения проблемы формирования жизнеспособного фенотипа.

Эволюция прокариотического генома

По мере совершенствования и повышения надежности главных механизмов потока информации значение избыточной ДНК в повышении выживаемости организмов снижалась. В такой ситуации одним из возможных направлений изменения генома было уменьшение его размеров за счет утраты некодирующих нуклеотидных последовательностей. Именно так можно представить эволюционный путь, пройденный геномом современных прокариот. Одновременно в качестве механизмов, поддерживающих выживаемость этих форм, в историческом развитии закреплялось свойственное им короткое время генерации, т.е. интенсивное размножение и быстрая смена поколений (кишечная палочка делится каждые 20 мин). Перечисленные особенности хорошо сочетаются с гаплоидностью прокариот, что приводит к воспроизведению в фенотипе любой мутации.

Экспрессия 95% ДНК, относительно малые размеры генома, гаплоидность, проявление в фенотипе практически каждой мутации в сочетании с коротким временем генерации обусловливают высокую приспособленность. Вместе с тем для прокариотического типа организации не свойственны обширные и разнообразные изменения структуры. Вследствие этого описанное направление эволюции, обеспечивая высокую способность к выживанию (прокариоты существуют на Земле около 3,5 млрд. лет), является тупиковым в плане прогрессивной эволюции живых существ.

Эволюция эукариотического генома

В отличие от изменений прокариотического генома преобразования генома в эволюции эукариот связаны с нарастающим увеличением количества ДНК. Это увеличение наблюдается в процессе прогрессивной эволюции эукариот . На фоне такого увеличения большая часть ДНК является «молчащей», т.е. не кодирует аминокислот в белках или последовательностей нуклеотидов в рРНК и тРНК. Даже в пределах одного гена молчащие (интроны) и кодирующие (экзоны) участки могут перемежаться. В составе ДНК обнаруживаются высоко и умеренно повторяющиеся последовательности. Вся масса ДНК распределена между определенным числом специализированных структур — хромосом. Хромосомы в отличие от нуклеоида прокариот имеют сложную химическую организацию. Эукариоты в большинстве случаев диплоидны. Время генерации у них значительно больше, чем у прокариот. Отмечаемые особенности, оформившиеся в ходе эволюции генома эукариот, допускают широкие структурные изменения и обеспечивают не только адаптивную (приспособительную), но и прогрессивную эволюцию.

Среди перечисленных выше моментов увеличение размеров генома в эволюции эукариот привлекает особое внимание. Этот процесс может осуществляться различными способами. Наиболее резко размер генома изменяется в результате полиплоидизации, которая достаточно широко распространена в природе. Она заключается в увеличении количества ДНК и хромосом, кратном гаплоидному. Достигаемое в результате состояние полиплоидии приводит к увеличению дозы всех генов и создает избыток «сырого» генетического материала, который впоследствии видоизменяется в результате мутаций и отбора.

По-видимому, в ходе эволюции в результате накопления мутаций и дивергенции нуклеотидных последовательностей полиплоидизация сопровождалась переходом к диплоидному состоянию. Само по себе увеличение дозы генов еще не означает достижения однозначно положительного биологического результата. Об этом свидетельствует развитие в эволюции эукариот механизмов компенсации возрастающей дозы генов в ходе их экспрессии путем сокращения времени жизни в клетках зрелой РНК. Так, у тетраплоидных карповых рыб в ответ на увеличение дозы генов рРНК в молекулах рРНК соматических клеток возникают скрытые внутренние разрывы, которые приводят к преждевременному их старению и сокращению содержания в цитоплазме.

Если бы увеличение объема генома происходило только в результате полиплоидизации, то в природе должно было бы наблюдаться скачкообразное изменение его размеров. На самом деле этот процесс демонстрирует плавное увеличение содержания ДНК в геноме. Это позволяет допустить возможность других механизмов, изменяющих его объем.

Действительно, некоторое значение в определении размера генома имеют хромосомные перестройки, сопровождающиеся изменением содержания ДНК в них, такие, как дупликации, делеции и транслокации. Они обусловливают повторение, утрату некоторых последовательностей в составе хромосомы или перенос их в другие хромосомы.

Важным механизмом увеличения объема генома является амплификация нуклеотидных последовательностей, которая заключается в образовании их копий, что приводит к возникновению повторяющихся участков ДНК. Особенностью генома эукариот является наличие таких повторов в большом количестве, свидетельствующее о существенном вкладе механизма амплификации в увеличение размеров наследственного материала. Амплифицированные последовательности образуют семейства, в которых они собраны вместе (тандемная организация) или же распределяются по разным хромосомам. Конкретные изменения, приводящие к амплификации, бывают различными. Появление тандемов повторяющихся последовательностей объясняется, например, неравным кроссинговером, вследствие которого возникают многократные дупликации отдельных участков ДНК. Возможна амплификация путем вырезания фрагмента с последующей его репликацией вне хромосомы и встраиванием копий в другие хромосомы. Предполагают также амплификацию, осуществляемую путем «обратной транскрипции» ДНК на РНК с участием фермента обратной транскриптазы с последующим встраиванием копий ДНК в различные локусы хромосом.

Во всех случаях амплификация некоторой последовательности приводит к возникновению в геноме более или менее многочисленных повторов и способствует некратному увеличению его объема. Наличие таких повторов в сочетании с мутационным процессом является предпосылкой дивергентной эволюции однотипных последовательностей в пределах семейства с соответствующим изменением свойств кодируемых белков или РНК.

Подвижные генетические элементы

Определенная роль в эволюции геномов как про-, так и эукариотических клеток принадлежит так называемым подвижным генетическим элементам — транспозонам. Они представляют собой автономные единицы, несущие в нуклеотидной последовательности информацию о структуре особых белков, которые обеспечивают их способность к перемещению из одного участка генома в другой. Такое перемещение — транспозиция — может происходить в строго определенные участки хромосом, узнаваемые этими специфическими белками. Транспозиция предполагает репликацию нуклеотидной последовательности подвижного генетического элемента и встраивание копии вДНК-мишеньс сохранением другой копии в прежнем месте.

Установлена также способность подвижных генетических элементов к точному вырезанию и удалению их из хромосомы. Перемещение таких нуклеотидных последовательностей в пределах генома может влиять на регуляцию экспрессии генов, которые прилежат к месту встраивания этих элементов. В результате таких перемещений могут активироваться ранее не активные гены, и наоборот.

Обнаружение подвижных генетических элементов в геномах как про-,так и эукариот указывает на определенные эволюционные преимущества, связанные с их наличием в наследственном материале. Возможно, рекомбинационные процессы, обеспечиваемые подвижными генетическими элементами, имеют немаловажное значение в структурной эволюции генома.

Роль горизонтального переноса генетического материала в эволюции генома

Наряду с транспозонами, не способными очевидно, существовать вне генома и образовывать свободные молекулы ДНК, описаны элементы, обнаруживаемые как в составе генома, так и вне его. Существование таких подвижных элементов дает возможность обсуждать роль горизонтального переноса генетического материала в эволюции генома.

Если описанные выше изменения структуры генома передаются из поколения в поколение организмов одного и того же вида, т.е. по вертикали, то горизонтальный перенос генетической информации может происходить и между организмами разных видов, одновременно существующими на Земле.

Горизонтальный перенос генов является главным источником инноваций, инструментом быстрого приобретения и возникновения новых генов, способных радикально изменить свойства клеток, расширить их адаптационный потенциал. Изменчивость организмов в результате горизонтальной передачи генов реализуется через различные каналы генетической коммуникации - процессы коньюгации, трансдукции, трансформации, процессы переноса генов в составе векторов - плазмид, вирусов, мобильных элементов. Активный перенос генов может происходить в симбиотических, паразитарных или ассоциативных системах, где осуществляется физический контакт клеток. В сущности, современная генетическая инженерия, использующая разного типа векторы, базируется на принципах горизонтального переноса генов, хотя еще недавно не было четкого понимания того, что такого рода генная инженерия широко распространена в природе и играет важную роль в эволюции. И только работы в области геномики в последние 10 лет доказали, что горизонтальный перенос генов был и остается (особенно в мире прокариот) одним из главных механизмов видообразования. Конечно, в ходе вертикальной эволюции повышалась степень автономизации организмов, возникали и совершенствовались барьеры, препятствующие горизонтальным генным переносам и "размыванию" геномов. Это касалось и ограничения контактов между организмами, механизмов проникновения и транспортировки молекул ДНК, действия систем рестрикции, разрушающих "чужую" ДНК, репаративных механизмов, обеспечивающих стабильность собственных геномов. Поэтому частота горизонтальных переносов была наиболее высокой на ранних этапах становления биосферы и снижалась по мере эволюции высших эукариот с усложнением организации генетического аппарата и развитием систем репродуктивной изоляции.

Горизонтальный перенос генов можно выявить по ряду показателей. Во-первых, по нуклеотидному составу ДНК (ГЦ-содержание), который является видоспецифичным признаком. Отличие в нуклеотидном составе отдельного сегмента от остальной части генома является указанием на присутствие "чужих" генов; иногда это целые кластеры, содержащие профаги, мобильные элементы, "островки" патогенности и т.д. Во-вторых, по частоте встречаемости в гене определенных кодонов. В генах каждого вида преимущественно используется ограниченный набор кодонов. Например, в гене gap у кишечной палочки содержится 20 лейциновых кодонов, но из 6 синонимичных триплетов кодон CTG встречается 19 раз, а кодон TTA только один раз. В гомологичном гене Bacillus subtilis кодон CTG вообще не используется, а преимущественно встречается TTA кодон. Таким образом, "чужие" гены легко обнаружить по отличию в частоте встречаемости кодонов. При этом, однако, надо учитывать, что в ходе длительной эволюции происходит амелиорация нуклеотидного состава, т.е. процесс унификации использования кодонов за счет мутаций и рекомбинации. "Чужие" гены становятся неотличимыми от своих собственных. Третий важный критерий - существенное отличие в положении анализируемого гена на филогенетическом дереве от большинства других генов. О "чужеродном" происхождении гена может говорить и высокая степень его сходства с гомологичным геном из отдаленного таксона при отсутствии подобного гена у филогенетически близких "родственников". Например, в случае, когда типично эукариотический ген вдруг обнаруживается у какого-то одного вида бактерий, а у других бактерий этого гена нет. На основе применения рассмотренных выше критериев можно достаточно легко выявить "вкрапления" в геном чужих сегментов ДНК, приобретенных в результате горизонтального переноса. Возможно три варианта переносов: 1) Приобретение нового гена, для которого нет гомолога в собственном геноме и в геномах филогенетически родственных организмов. В этом случае возникает принципиально новое качество; 2) Приобретение паралогичного (структурно похожего) гена с генетически отдаленным родством. В результате такого переноса увеличивается функциональное разнообразие белков в клетке; 3) Приобретение нового гена ксенолога, функционально замещающего свой собственный ген, который при этом, как правило, элиминируется. Новый и старый гены структурно различаются между собой, но обеспечивают аналогичные физиологические функции.

Какую выгоду может получить организм, приобретая чужой ген путем горизонтального переноса? 1) Новый путь биосинтеза или катаболизма, обеспечивающий организму преимущества в изменившихся условиях; например, появление способности утилизировать новый субстрат. 2) Повышение устойчивости к антибиотикам, токсинам, патогенам, подавляющим рост клеток данного вида; через горизонтальный перенос могут быть получены и гены, ответственные за средства "нападения", характерные, например, для патогенных микроорганизмов. 3) Замещение предсуществующих генов такими генами, продукты которых увеличивают эффективность функционирования клеточных систем: например, повышение термоустойчивости, резистентности к ингибиторам, оптимизация кинетических характеристик белка, интеграция в сложные комплексы и т.п. 4) Приобретенные гены могут оказаться и функционально нейтральными, дублирующими уже имеющиеся гены; такие дополнительные гены являются страховкой для организма в тех случаях, когда свой собственный ген будет поврежден мутацией или "замолчит" из-за нарушения в системах регуляции. Приобретение "чужих" генов может изменить направление эволюции вида, существенно повлиять на фенотип организма, на его способность к адаптации в экологическом сообществе. Новый ген может дать начало новой субпопуляции, которая способна вытеснить предсуществующий вид. Горизонтальный перенос генов способствует ускорению эволюционного процесса, по сравнению с градуальным накоплением мутаций или внутригеномными перестройками. Конечно, при этом не отрицается селективное значение мутационных утрат какой-то функции и важная эволюционная роль мутаций в генах, контролирующих стабильность генома (системы репликации, репарации, модификации ДНК и т.д.) и механизмы регуляции и координации генного действия.

Заключение

Таким образом, мы рассмотрели основные механизмы эволюции прокариотического и эукариотического геномов. В историческом плане вопрос об эволюции генов является важнейшим, поскольку эволюция генов связана с истоками жизни вообще и ее совершенствованием в частности. Суммируя вышеизложенное, можно заключить, что Системы подвижных генетических элементов геномов являются источником инсерционной изменчивости, влияют на экспрессию количественных и качественных признаков, а анализ механизмов и закономерностей горизонтального переноса генов дает новый ключ к изучению корреляции геосферных изменений и биологической эволюции на планете.

Список литературы

  1. Биология. В 2 кн. Кн.1: Учеб. Для медиц. Спец. Вузов / В.Н. Ярыгин, В.И. Васильева, И. Н. Волков, В.В. Синельщикова; Под ред. В.Н. Ярыгина. – 4-е изд., испр. И доп. – М.: Высш.шк., 2001 – 432 с.: ил. (с. 149-153)

  2. С.В.Шестаков «Роль горизонтального переноса генов в эволюции», Доклад, прочитанный на теоретическом семинаре геологов и биологов "Происхождение живых систем". 15-20 августа 2003 г., Горный Алтай, стационар "Денисова Пещера". Электронная публикация

Просмотров работы: 769