Второй важный этап при построении нейросетевой прогнозирующей системы - это определение следующих трех параметров: периода прогнозирования, горизонта прогнозирования и интервала прогнозирования. Период прогнозирования - это основная единица времени, на которую делается прогноз. Горизонт прогнозирования - это число периодов в будущем, которые покрывает прогноз. То есть, может понадобиться прогноз на 10 дней вперед, с данными на каждый день. В этом случае период - сутки, а горизонт - 10 суток. Наконец, интервал прогнозирования - частота, с которой делается новый прогноз. Часто интервал прогнозирования совпадает с периодом прогнозирования. Выбор периода и горизонта прогнозирования обычно диктуется условиями принятия решений в области, для которой производится прогноз. Выбор этих двух параметров - едва не самое трудное в нейросетевом прогнозировании. Для того чтобы прогнозирование имело смысл, горизонт прогнозирования должен быть не меньше, чем время, необходимое для реализации решения, принятого на основе прогноза. Таким образом, прогнозирование очень сильно зависит от природы принимаемого решения. В некоторых случаях, время, требуемое на реализацию решения, не определено, например, как в случае поставки запасных частей для пополнения запасов ремонтных предприятий. Существуют методы работы в условиях подобной неопределенности, но они повышают вариацию ошибки прогнозирования. Поскольку с увеличением горизонта прогнозирования точность прогноза, обычно, снижается, часто можно улучшить процесс принятия решения, уменьшив время, необходимое на реализацию решения и, следовательно, уменьшив горизонт и ошибку прогнозирования.
В некоторых случаях не так важно предсказание конкретных значений прогнозируемой переменной, как предсказание значительных изменений в ее поведении. Такая задача возникает, например, при предсказании момента, когда текущее направление движения рынка (тренд) изменит свое направление на противоположное.
Точность прогноза, требуемая для конкретной проблемы, оказывает огромное влияние на прогнозирующую систему. Также огромное влияние на прогноз оказывает обучающая выборка.
Первое, с чем сталкивается пользователь любого нейропакета - это необходимость подготовки данных для нейросети. На практике именно предобработка данных может стать наиболее трудоемким элементом нейросетевого анализа. Причем, знание основных принципов и приемов предобработки данных не менее, а может быть даже более важно, чем знание собственно нейросетевых алгоритмов. Последние, как правило, уже "зашиты" в различных нейроэмуляторах, доступных на рынке. Сам же процесс решения прикладных задач, в том числе и подготовка данных, целиком ложится на плечи пользователя.
Общий алгоритм прогнозирования с помощью нейронной сети состоит из следующих пунктов:
получение временного ряда с интервалом в выбранную временную итерацию;
заполнение «пробелов» в истории;
сглаживание ряда методом скользящих средних (или другим);
получение ряда относительного изменения прогнозируемой величины;
формирование таблицы «окон» с глубиной погружения временных интервалов;
добавление к таблице дополнительных данных (например, изменение величины за предыдущие годы);
шкалирование;
определение обучающей и валидационной выборок;
подбор параметров нейросети;
обучение нейросети;
проверка работоспособности нейросети в реальных условиях.
Характерный пример успешного применения нейронных вычислений в финансовой сфере - управление кредитными рисками. Как известно, до выдачи кредита банки проводят сложные статистические расчеты по финансовой надежности заемщика, чтобы оценить вероятность собственных убытков от несвоевременного возврата финансовых средств. Такие расчеты обычно базируются на оценке кредитной истории, динамике развития компании, стабильности ее основных финансовых показателей и многих других факторов. Один широко известный банк США опробовал метод нейронных вычислений и пришел к выводу, что та же задача по уже проделанным расчетам подобного рода решается быстрее и точнее. Например, в одном из случаев оценки 100 тыс. банковских счетов новая система, построенная на базе нейронных вычислений, определила свыше 90% потенциальных неплательщиков.
Другая очень важная область применения нейронных вычислений в финансовой сфере - предсказание ситуации на фондовом рынке. Стандартный подход к этой задаче базируется на жестко фиксированном наборе "правил игры", которые со временем теряют свою эффективность из-за изменения условий торгов на фондовой бирже. Кроме того, системы, построенные на основе такого подхода, оказываются слишком медленными для ситуаций, требующих мгновенного принятия решений. Именно поэтому основные японские компании, оперирующие на рынке ценных бумаг, решили применить метод нейронных вычислений. В типичную систему на базе нейронной сети ввели информацию общим объемом в 33 года деловой активности нескольких организаций, включая оборот, предыдущую стоимость акций, уровни дохода и т.д. Самообучаясь на реальных примерах, система нейронной сети показала большую точность предсказания и лучшее быстродействие: по сравнению со статистическим подходом дала улучшение результативности в целом на 19%.
К недостаткам прогнозирования с помощью нейронных сетей можно отнести следующее: длительное время обучения, проблема переобучения, трудность определения положения обучающей выборки и значащих входов.
СПИСОК ЛИТЕРАТУРЫ
1. Прогнозирование с помощью нейронных сетей. [Электронный ресурс]. - Режим доступа: http://apsheronsk.bozo.ru/Neural/Lec9.htm
2. Прогнозирование на основе нейронных сетей. [Электронный ресурс]. - Режим доступа: http://elanina.narod.ru/lanina/ind/neiro/2.htm