ТЕРМИЧЕСКАЯ ОБРАБОТКА И ТЕРМОМЕХАНИЧЕСКАЯ ОБРАБОТКА ОБСАДНЫХ ТРУБ ИЗ СТАЛИ 36Г2С - Студенческий научный форум

X Международная студенческая научная конференция Студенческий научный форум - 2018

ТЕРМИЧЕСКАЯ ОБРАБОТКА И ТЕРМОМЕХАНИЧЕСКАЯ ОБРАБОТКА ОБСАДНЫХ ТРУБ ИЗ СТАЛИ 36Г2С

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Цель работы ― углублённое изучение теории и технологии выплавки обсадных труб на основе анализа и обобщения научно-технической литературы и специализированных журналов и изданий.

В данной работе будут рассмотрены следующие вопросы:

  1. Назначение, область применения обсадных труб из стали 36Г2С, а также требования, предъявляемые к ним.

  2. Сделан обзор существующих методов производства обсадных труб.

  3. Рассмотрены способы улучшения существующих технологий производства обсадных труб.

При бурении нефтяных скважин стальные трубы используют для передачи вращения породоразрушающему инструменту, для крепления стенок скважин в процессе бурения и эксплуатации, для транспортировки нефтепродуктов на поверхность и других целей. Стоимость труб в общей стоимости бурового оборудования составляет около 60%.

По своему назначению трубы нефтяного сортамента разделяют на бурильные, утяжелённые бурильные, рабочие (или ведущие) бурильные, обсадные и насосно-компрессорные трубы.

При бурении и эксплуатации скважин из труб этих видов составляют бурильные, обсадные и насосные колонны, в которых отдельные трубы соединяют между собой с помощью специальных резьбовых соединений.

Передачу вращения породоразрушающему инструменту (в случае роторного способа), транспортировку жидкости или газа для очистки забоя скважины от разрушенной породы осуществляют с помощью бурильной колонны.

Обсадные трубы испытывают три вида нагрузок – растяжение, наружное (сминающее) и внутреннее давление. Растягивающие нагрузки вызываются собственным весом колонны обсадных труб. Обычно напряжения в обсадных трубах соответствуют разности наружного и внутреннего давлений. Но в некоторых случаях трубы могут оказаться под действием только наружного или только внутреннего давления. В этом случае трубы находятся в наиболее тяжёлых условиях работы.

Изготовление труб для нефтяной и газовой промышленности производится по специальным стандартам или техническим условиями, в которых строго регламентированы: размеры труб по диаметру и толщине стенки, длина труб, размеры соединений, категория прочности материала, а также точность изготовления труб и резьб, виды и методы испытаний.

В СНГ обсадные трубы изготавливают по ГОСТ-632-57 только бесшовными диаметром 114-426 мм с толщиной стенки 6-14 мм. Длина резьбы на трубах увеличивается с 79,5 до 98,5 мм по мере роста диаметра независимо от толщины стенки. Проект стандарта на обсадные трубы, взамен ГОСТ 632- 57, включает размеры труб по диаметрам (как принятые в практике СНГ, так и за рубежом) с толщиной стенки 6-14 мм. Аналогично APIstd5A в проекте предусмотрено изготовление труб с длинной и нормальной (короткой) резьбой. Причём длина резьбы такая же, как и в зарубежных стандартах. Для труб диаметром 127; 139,7; 177,8-298 мм с толщиной стенки 6-8 мм предусмотрена укороченная нормальная резьба.

В СНГ разработан проект специального государственного стандарта на сварные обсадные трубы диаметром 426-530 мм с толщиной стенки 8-12 мм. Для крепления неглубоких скважин более экономично применение сварных тонкостенных труб вместо бесшовных. Поэтому необходима организация производства таких труб диаметрами 114-426 мм с толщиной стенки 4-6 мм для скважин неответственного назначения.

Обсадные трубы в обязательном порядке подвергают гидравлическим испытаниям для проверки прочности тела трубы и герметичности резьбового соединения. Стандартом API предусмотрено испытание внутренним гидравлическим давлением обсадных труб диаметром до 245мм, вызывающим в теле трубы напряжения, равные 80% от предела текучести материала, а труб большого диаметра – 60%. Для высокопрочных труб, идущих на глубокие скважины, рекомендуют доводить напряжения в теле трубы до 95% от предела текучести материала.

Техническими условиями на трубы нефтяного сортамента химический состав сталей, за исключением серы и фосфора, не оговаривается и марка стали выбирается изготовителем по технико-экономическим соображениям и регламентируется в технологической документации. Максимальное содержание элементов определяется применяемым исходным сырьём и способом выплавки стали и находится в пределах 0,030-0,065% для серы и 0,035-0,110% для фосфора.

Для получения труб более высоких категорий прочности возможны два пути:

1)применение легированных сталей с последующей сравнительно простой термической обработкой (нормализация или нормализация и отпуск);

2)применение простых углеродистых или низколегированных сталей с последующей закалкой и отпуском.

Технологическая схема производства обсадных труб

Технология производства труб нефтяного сортамента определяется видом труб, категорией прочности и применяемым для их изготовления материалом. По категории прочности трубы нефтяного сортамента можно разделить на три группы:

1. Обычной прочности с пределом текучести до 490,3 Мн/м² (50 кг/мм²).

2. Высокой прочности с пределом текучести 539,3-735,5 Мн/м² (55-75 кг/мм²).

3. Особо высокой прочности – более 735,5 Мн/м²(75 кг/мм²).

Обсадные трубы обычной прочности с минимальным пределом текучести до 490,3 Мн/м² (50 кг/мм²) изготавливают по следующей технологической схеме. Горячая прокатка, обрезка концов и снятие фасок, нарезка резьбы, навёртка муфт, гидроиспытание и покраска. Термическая обработка этих труб (нормализация) производится только в случае получения неудовлетворительных механических свойств. Опыт эксплуатации труб категории прочности К (минимальный предел текучести 490,3 Мн/м² (50 кг/мм²) показывает, что трубы этой категории необходимо подвергать нормализации, так как эти трубы имеют неравномерные механические свойства по длине вследствие местной подкалки при прокатке.

Обсадные трубы высокой прочности в зависимости от применяемого материала могут изготавливаться по двум технологическим схемам. Для легированных сталей технологическая схема следующая: после прокатки и обрезки концов трубы подвергают нормализации в печи и отпуску в печи . Иногда для труб категории прочности Е применяют нормализацию с прокатного нагрева. После термической обработки трубы калибруют по наружному диаметру . Однако в этом случае операцию калибровки опускают вследствие отсутствия калибровочных станов в потоке печей и после термообработки трубы направляют прямо на правильные станы . После правки контролируют состояние наружной поверхности труб , нарезают резьбу и навинчивают муфты. Трубы с муфтой проверяют на прочность и герметичность резьбового соединения путём гидравлических испытаний на прессах. После гидроиспытаний трубы окрашивают, маркируют и направляют на склад готовой продукции.

Технологическая схема изготовления высокопрочных труб из углеродистых и низколегированных сталей отличается от описанной выше только термической обработкой. После обрезки концов на станках трубы нагревают до температур закалки в печи , охлаждают в специальных устройствах и затем подвергают отпуску в печи . При применении закалки и отпуска вследствие искажения точности поперечного сечения и увеличения кривизны операции калибровки и правки обязательны. Для снижения прочности материала труб при калибровке и правке эти операции должны выполняться при температурах 200-500ºC.

Термическая обработка обсадных труб из стали 36Г2С

Термическая обработка – важнейшая составная часть технологии производства различных видов стальных труб.

Основные цели термической обработки труб следующие:

1. Обеспечение различных эксплуатационных свойств (трубы для добычи нефти и газа, трубы для котлов теплоэнергетических установок и др.);

2. Подготовка структуры и свойств для дальнейшей обработки в различных областях машиностроения (трубы для подшипников);

3. Восстановление пластичности металла для возможности дальнейшего деформирования в процессе передела (трубы промежуточных размеров);

4. Создание диффузионной связи между различными слоями в биметаллических, многослойных и свертных паяных трубах;

5. Выравнивание структуры и свойств металла сварных и литых труб переменной геометрии по длине (например, бурильных труб с высаженными концами).

При производстве труб нефтяного сортамента нормализацию как термическую операцию применяют в тех случаях, когда требуемые механические свойства металла труб (предел текучести до 539,4 Мн/м² (55 кг/мм²) можно получить из стали простой, дешёвой марки типа 36Г2С).

Нормализацию труб следует производить после полного их потемнения после прокатки. В этом случае крупнозернистая и неоднородная структура стали, полученная в результате высокого нагрева перед прокаткой, подвергается по существу перекристаллизации в процессе охлаждения и последующего нагрева под нормализацию.

Температура нормализации труб марки 36Г2С находится в пределах 830-890ºC. Если после нормализации предел текучести или предел прочности ниже обусловленных ГОСТом норм, то температуру повторной нормализации следует повысить на 20-30ºC. Неудовлетворительные результаты испытаний по относительному удлинению, относительному сужению или ударной вязкости можно исправить снижением температуры на 20-30ºC.

Заметное влияние на изменение механических свойств оказывает скорость охлаждения труб. Для труб из стали 36Г2С применение ускоренного охлаждения обдувкой воздухом повышает предел прочности высаженных концов на 4,5%, предел текучести на 5,4%, ударную вязкость на 13,7%, относительное удлинение практически остаётся без изменения.

Точные режимы термической обработки устанавливают при помощи лабораторных и цеховых экспериментов с учётом термической характеристики печи, условий охлаждения и специфичности свойств данной стали. Температура нормализации для стали данной марки должна быть достаточно высокой, чтобы обеспечить получение гомогенно-бейнитной структуры, являющейся основой для получения после отпуска высоких прочностных и пластических свойств.

Подбирая режим термической обработки, можно получить при определенных условиях наилучшие показатели механических свойств для стали данной марки. Так для стали 36Г2С такими условиями являются: температура закалки 850ºС, отпуска 650ºС, воды 40-60ºС.

Структура закаленной и отпущенной стали в этом случае состоит из мелкодисперсного сорбита без свободных выделений феррита, что свидетельствует о переходе при нагреве за критическую точку Ас3, а следовательно, о полной закалке стали.

Высокие пластические и прочностные свойства, соответствующие требованиям марки Е, а по переделу текучести марки Л, обеспечивает полная термическая обработка труб, полученных с автоматического стана из катаной заготовки стали марки 36Г2С.

В данном случае нагрев труб под закалку осуществляли в методической проходной печи с наклонным подом, а отпуск – в камерной печи с выдержкой порядка 2ч. Закалку производили в ванне с водой, подогретой до температуры 40-60ºС.

В последнее время получают развитие новые технологические процессы комбинированного термомеханического воздействия на структуру и свойства обсадных труб, позволяющие значительно улучшить их эксплуатационные характеристики и обеспечить существенную экономию металла в народном хозяйстве.

После раскатки трубы подвергают закалке в спрейерных охлаждающих устройствах, совмещенных с оборудованием выходной стороны раскатных станов. Трубы, имеющие температуру на выходе в раскатные станы, более низкую, чем задано по технологии ВТМО, после охлаждения автоматически исключаются от потока высокопрочных труб и сбрасываются в карман. Закаленные трубы с выходной стороны станов поступают на центральный рольганг и перекладывателем через устройство для слива воды направляются на выходной рольганг отпускной печи с шагающими балками (с поперечным перемещением труб). Эта печь (с газовым обогревом) имеет две технологические зоны: нагрева и выдержки. Топливо сжигают в специальных, вынесенных из рабочего пространства надсводовых топках с рециркуляцией разбавленных продуктов сгорания в рабочем пространстве печи. Конструкция шагающих балок предусматривает перекатывание труб не только на рабочем, но и на холостом ходу балок, что обеспечивает равномерный нагрев труб по периметру. Шагающие балки стационарные и не охлаждаются.

Далее нагретые до заданной температуры отпуска трубы поступают на рольганг выдачи, а затем в калибровочный стан. Клети этого стана нерегулируемые, с индивидуальным приводом. Стан предназначен для тёплой и горячей калибровки труб.

После калибровки трубы с температурой, близкой к температуре отпуска, подвергают тёплой правке на правильном стане и охлаждают на колёсном холодильнике. При охлаждении благодаря быстрому вращению труб искривление их по длине почти отсутствует. Поэтому для высокопрочных труб холодную правку, как обязательную технологическую операцию можно не предусматривать. В конце холодильника есть обводной рольганг перед станами холодной правки, по которому высокопрочные трубы направляются непосредственно для отделки.

Внедрение новой технологии позволит улучшить качество труб, применить для их изготовления исходную заготовку из более дешёвого металла и снизить эксплуатационные затраты.

Контроль качества труб после термической и термомеханической обработки

С целью обеспечения высоких эксплуатационных свойств труб нефтяного сортамента при их изготовлении осуществляется тщательный состояния внутренней и наружной поверхностей.

Заключительной операцией технологического контроля обсадных труб является испытание внутренним гидравлическим давлением. Цель гидравлического испытания – проверка прочности тела трубы и герметичности резьбового соединения.

Применение закалки и отпуска в некоторых случаях вызывает появление дополнительных дефектов, обусловленных термической обработкой (закалочные трещины и др.). Поэтому в технологии производства высокопрочных труб особую важность, кроме гидравлических испытаний, приобретает контроль качества поверхностей трубы и особенно резьбовых концов. Наружные и внутренние дефекты значительно снижают сопротивление трубы действующим нагрузкам и могут служить причиной аварий.

Проанализировав весь рассмотренный материал можно сделать следующие выводы:

  1. Необходимо совершенствование критериев контроля качества поверхностей трубы, тщательного контроля геометрических размеров и механических свойств.

  2. Наиболее перспективными в плане повышения контроля труб в настоящее время являются способы (визуальный осмотр, контроль с помощью магнитного и ультразвукового метода).

Просмотров работы: 215