ПОЛУЧЕНИЕ ВИТАМИННЫХ ПРЕПАРАТОВ - Студенческий научный форум

X Международная студенческая научная конференция Студенческий научный форум - 2018

ПОЛУЧЕНИЕ ВИТАМИННЫХ ПРЕПАРАТОВ

Гуленков С.Д. 1, Христофорова И.А. 1
1Владимирский государственный университет им. А.Г. и Н.Г. Столетовых
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Витаминные препараты представляют собой группу незаменимых органических соединений различной химической природы, необходимых любому организму в ничтожных концентрациях и выполняющих в нем каталитические и регуляторные функции. Недостаток того или иного витамина нарушает обмен веществ и нормальные процессы жизнедеятельности организма, приводя к развитию патологических состояний. Витамины не образуются у гетеротрофов. Способностью к синтезу витаминов обладают лишь автотрофы, в частности растения. Многие микроорганизмы также образуют целый ряд витаминов, поэтому синтез витаминов с помощью микроорганизмов стал основой для разработки технологий промышленного производства этих биологически активных соединений. [2]

До 30-х годов прошлого столетия рибофлавин (витамин В2) выделяли из природного сырья. В наибольшей концентрации он присутствует в моркови и печени трески. Из 1 т моркови можно изолировать лишь 1 г рибофлавина, а из 1 т печени — 6 г. В 1935 г. обнаружен активный продуцент рибофлавина — гриб эремотециум эшби, способный при выращивании на 1 т питательной смеси синтезировать 25 кг витамина В2. Сверхсинтеза рибофлавина добиваются действием на дикие штаммы мутагенов, нарушающих механизм ретроингибирования синтеза витамина В2, флавиновыми нуклеотидами, а также изменением состава культуральной среды. Отбор мутантов ведут по устойчивости к аналогу витамина В2 — розеофлавину. [1]

Витамин В12 открыт в 1948 г. одновременно в США и Англии. В 1972 г. в Гарвардском университете был осуществлен химический синтез корриноидного предшественника витамина В12. Химический синтез корнестерона — структурного элемента корринового кольца витамина, включающий 37 стадий, в крупных масштабах не воспроизведен из-за сложности процесса.

Первоначально витамин В12 получали исключительно из природного сырья, но из 1 т печени можно было выделить всего лишь 15 мг витамина. Единственный способ его получения в настоящее время — микробиологический синтез. Продуцентами витамина В12 при его промышленном получении служат актиномицеты, метанообразующие и фотосинтезирующие бактерии, одноклеточные водоросли. Для получения высокоочищенных препаратов витамина В12 пропионовокислые бактерии культивируют периодическим способом на средах, содержащих глюкозу, казеиновый гидролизат, витамины, неорганические соли, хлорид кобальта. [4]

Из культуральной жидкости витамин В12 выделяют экстракцией органическими растворителями, ионообменной хроматографией с последующим осаждением из фракций в виде труднорастворимых соединений. В процессе получения витамина В12 с помощью пропионовокислых бактерий применяют дорогостоящую антикоррозийную аппаратуру, сложные и дорогие питательные среды. В последние годы исследуется возможность получения витамина с использованием иммобилизованных клеток пропионовокислых бактерий.[4]

Важное место в обмене веществ у животных занимает р-каротин, который в печени превращается в витамин А (ретинол). В организме человека и животных каротины не образуются. Основные источники р-каротина для животных — растительные корма; человек получает р-каротин также из продуктов животного происхождения. Р-Каротин можно выделить из ряда растительных объектов — моркови, тыквы, облепихи, люцерны. Установлено, что многие микроорганизмы — фототрофные бактерии, актиномицеты, плесневые грибы, дрожжи — синтезируют каротин. [6]

Микробиологическим способом получают и витамин D2 (эрго-кальциферол), при производстве которого освоено дешевое сырье (углеводороды) и установлен стимулирующий эффект ультрафиолетовых лучей на синтез эргостерина культурой дрожжей.

В основном в условиях промышленного производства пантотеновую кислоту получают методом химического синтеза. Наиболее важной коферментной формой витамина В5 является кофермент ацетилирования (КоА). Способностью продуцировать в значительных количествах КоА обладают многие микроорганизмы, в частности актиномицеты. Активно внедряются в промышленное производство способы получения пантотеновой кислоты и ее структурных компонентов из р-аланина и пантотеата калия с помощью иммобилизованных клеток бактерий, а также достигнуты существенные успехи при получении КоА с использованием мутантных штаммов Brevibacterium ammoniagenes, которые позволяют получать КоА в количестве до 3 г на литр. [8]

Одним из наиболее распространенных биотехнологических способов получения коферментной формы никотиновой кислоты — никотинамидадениндинуклеотида (НАД) является выделение (экстракция) его из микроорганизмов, как правило, из пекарских дрожжей. Для повышения содержания НАД в дрожжевых клетках культивирование проводят на средах с предшественниками синтеза никотиновой кислоты. Так, при добавлении в среды культивирования аденина или самой никотиновой кислоты получают до 12 мг НАД на 1 г клеток (по сухой массе).

Аскорбиновая кислота в мировом промышленном производстве витаминной продукции в целом занимает наибольшую долю — около 40 тыс. т в год. Ее синтез был разработан швейцарскими учеными А. Грюсснером и С. Рейхштейном в 1934 г. и используется до настоящего времени. Синтез аскорбиновой кислоты является многостадийным химическим процессом, в котором только одна стадия представлена биотрансформацией. Эта стадия трансформации d-сорбита в L-сорбозу при участии ацетатных бактерий. Для получения сорбозы используют глубинную ферментацию, когда культуру продуцента Gluconobacter oxydans выращивают в ферментерах периодического режима с мешалкой и барботером для усиления аэрации и массообмена в течение 20 — 40 ч с результатом по выходу сорбозы до 98% исходного количества сорбита в среде. Обычно для достижения такого высокого выхода целевого продукта в питательную среду вносят кукурузный или дрожжевой экстракт в количестве около 20%. По окончании ферментации сорбозу выделяют из культуральной жидкости. Помимо оптимизации среды можно совершенствовать и технологическую аппаратуру. Например, переход от периодического культивирования продуцента Gluconobacter oxydans к непрерывному, в аппарате колоночного типа увеличивает скорость образования сорбозы в 1,7 раз. [3]

Впервые кальциферол был выделен из рыбьего жира в 1936 г. А. Виндаусом и применен при лечении рахита. Он получил название витамина D3, так как ранее из растительных масел был выделен эргостерин под названием витамин D, при облучении которого получили витамин D2 — эргокальциферол (кальциферол — в переводе «несущий кальций»).

В настоящее время кальциферол производят из эргостерина с применением УФ-облучения биотехнологическим методом. В процессе преобразования эргостерина в эргокальциферол принимают участие микроорганизмы. Особенно богаты эргостерином клетки дрожжей всех видов и плесневые грибы. В сухой биомассе дрожжей содержится 5—10% эргостерина.

При дальнейшем УФ-облучении эргостерина получают витамин D2, который либо используется как пищевая добавка, либо подвергается дальнейшей обработке с целью получения кристаллического витамина D2. [5]

Витамин А — циклический, непредельный одноатомный спирт, образуемый в слизистой кишечника и печени из провитаминов под воздействием фермента каротиноксидазы. Каротиноиды — широко распространенная группа природных пигментов, образуемых высшими растениями, водорослями и некоторыми микроорганизмами. У животных эти пигменты не образуются, а поступают с продуктами питания и служат источником витамина А. [10]

Убихиноны в последнее время вызывают интерес как перспективные лечебные препараты. С одной стороны, они синтезируются в организме животных и человека, делая необязательным их поступление с пищевыми продуктами, что отличает их от группы витаминов.

В производстве убихинонов применяются биотехнологические методы, в основе которых лежит экстракция из биологического материала. В промышленном производстве убихинонов, в качестве субстрата используются как растительные ткани, так и микроорганизмы с высоким содержанием убихинонов, например дрожжи и грибы.

В настоящее время используется биотехнология получения уби-хинона-9 и эргостерина из микробных липидов, являющихся побочным продуктом крупного производства белково-витаминного концентрата при выращивании грибов Candida maltosa. [11]

Витамины необходимы для образования иммунных клеток и антител. Суточная потребность в витаминах может быть небольшой, но именно от обеспеченности витаминами зависит нормальная работа иммунной системы и энергетический обмен. Вот почему витаминный дефицит ускоряет старение организма и увеличивает частоту возникновения инфекционных заболеваний и злокачественных опухолей, что значительно сокращает продолжительность и качество жизни.

Специалисты рекомендуют принимать препараты, которые содержат в своем составе весь спектр жизненно важных витаминов, причем, что не менее важно, комплекс должен быть качественным и хорошо сбалансирован по дозировкам. Это будет гарантией эффективности и безопасности препарата. Высокое качество и оптимальные дозировки витаминов позволяют значительно снизить риск аллергических реакций, которые, к сожалению, нередко встречаются в последнее время.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Карелин А.О. , Ерунова Н.В. «Витамины». - М.: серия советы доктора, 2002. - 160 с.2. Вент Ф. «В мире растений», -М.,1993 г. - 232 с3. Блинкин С.А. « Имунитет и здоровье», -М.: Знание. 1977г. - 316 с4. Вершигора А.Е. «Витамины круглый год»,-М 2007 г. - 159 с

5. http://medicina.dobro-est.com

6. Яннус А. Э. и Коллас С. Ю. Микробиология, эпидемиология и иммунобиология, 2010 г. - 426 с

7. Фердман Д. Л. В кн.: Витамины. Изд. АН УССР. Киев, 1986 г. - 285 с

8. Смирнова Л. А. Витаминные ресурсы. Витамин В12, его биосинтез, функции и применение. Изд. АН СССР. 1961 г. - 150 с

9. Минкина А. И. Биохимия, 2003 г. - 215 с

10. Игнатова Л. Н. Клиническая медицина, 2006 г. - 652 с

11. Березовский В. М. Химия витаминов. М., 1999 г. - 326 с

Просмотров работы: 1617