ПРОБЛЕМЫ ТЕПЛОВОЙ ЭНЕРГЕТИКИ РОССИИ - Студенческий научный форум

X Международная студенческая научная конференция Студенческий научный форум - 2018

ПРОБЛЕМЫ ТЕПЛОВОЙ ЭНЕРГЕТИКИ РОССИИ

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Технические возможности человека изменять природную сре­ду стремительно возрастали, достигнув своей высшей точки в эпоху научно-технической революции. Ныне он способен осуществить та­кие проекты преобразования природной среды, о которых еще срав­нительно недавно не смел и мечтать. Рост могущества че­ловека ведет к увеличению отрицательных для природы и, в конеч­ном счете, опасных для существования человека последствий его де­ятельности, значение которых только сейчас начинает осознаваться.

Энергетика — это та отрасль производства, которая развивается невиданно быстрыми темпами. Если численность населения в условиях современного демографического взрыва удваивается за 40-50 лет, то в производстве и потреблении энергии это происходит через каждые 12-15 лет. При таком соотношении темпов роста населения и энергетики, энерговооруженность лавинообразно увеличивается не только в суммарном выражении, но и в расчете на душу населения.

За счет сжигания топлива (включая уголь, дрова и другие биоресурсы) в настоящее время производится около 90% энергии. Доля тепловых источников уменьшается до 80-85% в производстве электроэнергии. При этом в промышленно развитых странах нефть и нефтепродукты используются в основном для обеспечения нужд транспорта. Например, в США (данные на1995 г.) нефть в общем энергобалансе страны составляла 44%, а в получении электроэнергии — только 3%. Для угля характерна противоположная закономерность: при 22% в общем энергобалансе он является основным в получении электроэнергии (52%). В Китае доля угля в получении электроэнергии близка к 75%, в то же время в России преобладающим источником получения электроэнергии является природный газ (около 40%), а на долю угля приходится только 18% получаемой энергии, доля нефти не превышает 10% [2].

В мировом масштабе гидроресурсы обеспечивают получение около 5-6% электроэнергии, атомная энергетика, дает 17-18% электроэнергии. Причем в ряде стран она является преобладающей в энергетическом балансе (Франция — 74%, Бельгия -61%, Швеция — 45%).

Сжигание топлива — не только основной источник энергии, но и важнейший поставщик в среду загрязняющих веществ. Тепловые электростанции в наибольшей степени «ответственны» за усиливающийся парниковый эффект и выпадение кислотных осадков. Они, вместе с транспортом, поставляют в атмосферу основную долю техногенного углерода (в основном в виде СО2), около 50% двуокиси серы, 35% — окислов азота и около 35% пыли. Имеются данные, что тепловые электростанции в 2-4 раза сильнее загрязняют среду радиоактивными веществами, чем АЭС такой же мощности [3].

Можно считать, что тепловая энергетика оказывает отрицательное влияние практически на все элементы среды, а также на человека, другие организмы и их сообщества.

Вместе с тем влияние энергетики на среду и ее обитателей в большей мере зависит от вида используемых энергоносителей (топлива). Наиболее чистым топливом является природный газ, далее следует нефть (мазут), каменные угли, бурые угли, сланцы, торф.

Имеются данные, что если бы вся сегодняшняя энергетика базировалась на угле, то выбросы СО, составляли бы 20 млрд. тонн в год (сейчас они близки к 6 млрд. т/год). Это тот предел, за которым прогнозируются такие изменения климата, которые обусловят катастрофические последствия для биосферы.

ТЭС — существенный источник подогретых вод, которые используются здесь как охлаждающий агент. Эти воды нередко попадают в реки и другие водоемы, обусловливая их тепловое загрязнение и сопутствующие ему цепные природные реакции (размножение водорослей, потерю кислорода, гибель гидробионтов, превращение типично водных экосистем в болотные и т. п.).

Несомненно, что в ближайшей перспективе тепловая энергетика будет оставаться преобладающей в энергетическом балансе мира и отдельных стран. В этой связи рассмотрим некоторые пути и способы их использования, позволяющие существенно уменьшать отрицательное воздействие на среду. Эти способы базируются в основном на совершенствовании технологий подготовки топлива и улавливания вредных отходов. В их числе можно назвать следующие [4]:

- использование и совершенствование очистных устройств. В настоящее время на многих ТЭС улавливаются в основном твердые выбросы с помощью различного вида фильтров. Наиболее агрессивный загрязнитель — сернистый ангидрид на многих ТЭС не улавливается или улавливается в ограниченном количестве. В то же время имеются ТЭС (США, Япония), на которых производится практически полная очистка от данного загрязнителя, а также от окислов азота и других вредных полютантов. Для этого используются специальные десульфурационные (для улавливания диоксида и триоксида серы) и денитрификационные (для улавливания окислов азота) установки. Наиболее широко улавливание окислов серы и азота осуществляется посредством пропускания дымовых газов через раствор аммиака. Конечными продуктами такого процесса являются аммиачная селитра, используемая как минеральное удобрение, или раствор сульфита натрия (сырье для химической промышленности). Такими установками улавливается до 96% окислов серы и более 80% оксидов азота. Существуют и другие методы очистки от названных газов.

- уменьшение поступления соединений серы в атмосферу посредством предварительного обессеривания (десульфурации) углей и других видов топлива (нефть, газ, горючие сланцы) химическими или физическими методами. Этими методами удается извлечь из топлива от 50 до 70% серы до момента его сжигания.

- большие и реальные возможности уменьшения или стабилизации поступления загрязнений в среду связаны с экономией электроэнергии. Особенно велики такие возможности за счет снижения энергоемкости получаемых изделий. Например, в США на единицу получаемой продукции расходовалось в среднем в 2 раза меньше энергии, чем в бывшем СССР. В Японии такой расход был меньшим в три раза. Не менее реальна экономия энергии за счет уменьшения металлоемкости продукции, повышения ее качества и увеличения продолжительности жизни изделий. Перспективно энергосбережение за счет перехода на наукоемкие технологии, связанные с использованием компьютерных и других слаботочных устройств.

- не менее значимы возможности экономии энергии в быту и на производстве за счет совершенствования изоляционных свойств зданий. Реальную экономию энергии дает замена ламп накаливания с КПД около 5% флуоресцентными, КПД которых в несколько раз выше.

Крайне расточительно использование электрической энергии для получения тепла. Важно иметь в виду, что получение электрической энергии на ТЭС связано с потерей примерно 60-65% тепловой энергии, а на АЭС — не менее 70% энергии. Энергия теряется также при передаче ее по проводам на расстояние. Поэтому прямое сжигание топлива для получения тепла, особенно газа, намного рациональнее, чем через превращение его в электричество, а затем вновь в тепло.

- заметно повышается также КПД топлива при его использовании вместо ТЭС на ТЭЦ. В последнем случае объекты получения энергии приближаются к местам ее потребления и тем самым уменьшаются потери, связанные с передачей на расстояние. Наряду с электроэнергией на ТЭЦ используется тепло, которое улавливается охлаждающими агентами. При этом заметно сокращается вероятность теплового загрязнения водной среды. Наиболее экономично получение энергии на небольших установках типа ТЭЦ (иогенирование) непосредственно в зданиях. В этом случае потери тепловой и электрической энергии снижаются до минимума. Такие способы в отдельных странах находят все большее применение.

Существуют также различные альтернативные источники получения энергии. Основные современные источники получения энергии (особенно ископаемое топливо) можно рассматривать в качестве средства решения энергетических проблем на ближайшую перспективу. Это связано с их исчерпанием и неизбежным загрязнением среды. В этой связи важно познакомиться с возможностями использования новых источников энергии, которые позволили бы заменить существующие. К таким источникам относится энергия солнца, ветра, вод, термоядерного синтеза и других источников которые можно использовать следующим образом [5]:

- солнце как источник тепловой энергии;

- солнце как источник электрической энергии;

- использование солнечной энергии через фотосинтез и биомассу;

- ветер как источник энергии;

- возможности использования нетрадиционных гидроресурсов;

- энергетические ресурсы морских, океанических и термальных вод;

- термоядерная энергия.

В заключение можно сделать вывод, что современный уровень знаний, а также имеющиеся и находящиеся в стадии разработок технологии дают основание для оптимистических прогнозов: человечеству не грозит тупиковая ситуация ни в отношении исчерпания энергетических ресурсов, ни в плане порождаемых энергетикой экологических проблем.

Список использованных источников

  1. Аттали Ж. На пороге нового тысячелетия: Пер. с англ. — М.: Международные отношения, 2009.

  2. Бродский А.К. Краткий курс общей экологии: Учеб. пособие. — 3-е изд. – М., 1999.

  3. Горелов А.А. Экология: Учеб. пособие. — М.: Центр, 1998.

  4. Ерофеев Б.В. Экологическое право: Учебник для вузов. — М.: Юриспруденция, 1999.

  5. Ерофеев Б.В. Экологическое право России: Учебник. — М.: Юристъ, 1996.

Просмотров работы: 248