ОШИБКИ УЧАЩИХСЯ В УСТНЫХ ВЫЧИСЛЕНИЯХ НА ДЕЙСТВИЯ СЛОЖЕНИЕ И ВЫЧИТАНИЕ И ИХ УСТРАНЕНИЕ - Студенческий научный форум

IX Международная студенческая научная конференция Студенческий научный форум - 2017

ОШИБКИ УЧАЩИХСЯ В УСТНЫХ ВЫЧИСЛЕНИЯХ НА ДЕЙСТВИЯ СЛОЖЕНИЕ И ВЫЧИТАНИЕ И ИХ УСТРАНЕНИЕ

Коробко А.О. 1
1Гуманитарно-педагогическая академия (филиал) ФГАОУ ВО «Крымский федеральный университет им. В.И. Вернадского»
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Одна из важнейших задач обучения школьников математике – формирование у них устных вычислительных навыков, основой которых является осознанное и прочное усвоение приемов устных вычислений. Вычислительные навыки необходимы как в практической жизни каждого человека, так и в учении. В ФГОС НОО сказано, что, изучая математику, «учащиеся овладевают основами логического мышления, пространственного воображения и математической речи, измерения, пересчета, приобретают необходимые вычислительные навыки» [5].

Проблема формирования у учащихся вычислительных умений и навыков всегда привлекала особое внимание педагогов, методистов, учителей. В методике математики известны исследования М.А. Бантовой [1], Г.В. Бельтюковой [2], А.В. Белошистой [3], Т.И. Фаддейчевой [4] и многих других.

Процесс овладения вычислительными навыками довольно сложен: сначала ученики должны усвоить тот или иной вычислительный прием, а затем в результате тренировки научится достаточно быстро выполнять вычисления, а в отношении табличных случаев – запомнить результаты наизусть. К тому же в каждом концентре изучается довольно большое количество приемов, поэтому естественно, что не все ученики сразу усваивают их, часто допускают ошибки.

На основе чтения учебно-методической литературы и периодических печатных изданий были выявлены и проанализированы типичные ошибки учеников при устных вычислениях. Рассмотрим типичные ошибки учеников при выполнении ими арифметических действий сложения и вычитания, а также методические приемы их предупреждения и устранения. В концентре «Десяток» возможны следующие ошибки:

Смешивание действий сложения и вычитания (7+2=5, 6-4=10). Такие ошибки возникают по двум причинам. Первая причина: ученики еще не усвоили самих действий сложения и вычитания или же знаков этих действий. Чаще это происходит потому, что учитель рано стал требовать выполнения арифметических действий без использования счетного материала (палочек, геометрических фигур из набора и т.п.) Для устранения уже появившихся ошибок надо вернуть учеников к работе со счетным материалом. При этом важно, чтобы они сопровождали вычисления словесным рассуждением и соответствующей записью. Вторая причина ошибок в замене одного арифметического действия другим – это недостаточный анализ решаемого примера: при вычислениях ученики больше обращают внимание на числа, чем на знак действия. Поэтому важно с первых уроков обучения вычислениям приучать учеников к тому, чтобы они называли сначала вслух, а позднее про себя, какое арифметическое действие надо выполнить и над какими числами, и только после этого вычисляли результат.

Получение результата на единицу больше или меньше верного (7+2=8, 9-3=7). Подобные ошибки возникают при присчитывании и отсчитывании чисел 2, 3, 4 по единице с опорой на натуральный ряд. Например, прибавляя к 7 число 2, ученики должны назвать два числа, следующие в ряду за числом 7. Однако бывает, что они первым называют данное число, а не следующее за ним (7, 8) и думают, что они прибавили 2 и что 7+2=8. Для предупреждения таких ошибок полезно, чтобы при присчитывании и отсчитывании по единице назывались промежуточные результаты (7+1=8, 8+1=9, значит, 7+2=9).

Использование нерациональных приемов. Например, выполняя сложение в случаях вида 3+6, часть учеников вместо приема перестановки слагаемых используют прием присчитывания по единице (по 2, по 3). А это трудно, и ученики часто забывают, сколько единиц они уже прибавили, и сколько осталось прибавить, вследствие чего получают неправильный результат (3+6=8, 3+6=10). Также объясняются ошибки вида 9-7=4. Предупреждению таких ошибок помогает сравнение рациональных и нерациональных приемов вычислений. Так, обнаружив, что некоторые ученики допускают ошибки при решении примеров вида 3+6, учитель спрашивает, как они решали пример (3+1=4. 4+1=5). Затем другие ученики объясняют, как можно решить этот пример быстрее, легче (надо переставить слагаемые 6+3=9). Здесь же ученики указывают, в каких случаях следует переставлять слагаемые (когда к меньшему числу прибавляем большее).

Запись или называние вместо результата одного из компонентов. Например, 3+5=5, 6-4=6. Такие ошибки возникают преимущественно по невнимательности. Как правило, ученики сами находят ошибку и дают верный ответ. Для предупреждения подобных ошибок важно научить детей выполнять проверку решения путем прикидки результата: при сложении результат должен быть больше каждого из слагаемых (если ни одно из них не равно нулю). При вычитании результат должен быть меньше уменьшаемого (если вычитаемое не равно нулю). Если эти отношения не выполняются, значит, в вычислениях допущена ошибка. Чтобы научить детей такой проверке надо попутно с вычислениями чаще проводить наблюдения, сравнивая результат с компонентами действий сложения и вычитания. Устранению названных ошибок помогает анализ и обсуждение неверно решенных примеров.

– Смешивания цифр. Например, ученик пишет: 4+2=9, хотя устно называет правильный результат. Для устранения подобных ошибок необходима индивидуальная работа по запоминанию цифр. Пусть ученик нарисует названное учителем число каких-либо предметов и рядом запишет цифрой соответствующее число, пусть найдет в своем наборе названные цифры.

В концентре «Сотня» возможны следующие ошибки:

Смешивание приемов вычитания, основанных на свойствах вычитание суммы из числа и числа из суммы. Например:

50 – 36=2656 – 30 = 14

50 – 30 = 20 50 – 30 = 20

20 + 6 = 26 20 – 6 = 14

Чтобы предупредить появление подобных ошибок. Надо проводить специальную работу по сравнению смешиваемых приемов, выявляя при этом существенное различие. Ученикам предлагаются пары примеров, аналогичные приведенным, решая которые, они сравнивают каждый сделанный шаг:

80 – 27 = 87 – 20=

/ /

20+7 80+7

80 – 20 = 60 80 – 20 = 60

60 – 7 = 53 60 + 7 = 67

В первом примере надо вычитать из 80 сумму чисел 20 и 7, а во втором – вычитать одно число 20 из суммы чисел 80 и 7. В первом примере вычли 20 и вычли 7, а во втором вычли только 20 из 80 и к результату прибавили 7.

Выполнение сложения и вычитания над числами разных разрядов, как над числами одного разряда. Например, ученик складывает число десятков с числом единиц (54+2=74), вычитает из числа единиц число десятков (57-40=53). Для предупреждения названных ошибок полезно обсудить неверные решения примеров. Так, учитель предлагает найти среди данных примеров те, при решении которых допущена ошибка: 42+3=45, 25+4=65, 54+30=57. Затем выясняется, какая допущена ошибка: во втором примере 4 единицы прибавили к 2 десяткам и получили 6 десятков, это неправильно, т.к. единицы надо прибавлять к единицам, получится 29, а не 65. А в третьем примере 3 десятка прибавили к 4 единицам, получили 7 единиц, это неверно, десятки надо прибавлять к десяткам, получится 84, а не 57. После этого еще раз повторяется, что единицы прибавляют к единицам, а десятки – к десяткам. Такую работу следует провести и при рассмотрении примеров на вычитание.

Ошибки в табличных случаях сложения и вычитания, когда они входят в качестве операций в более сложных примерах на сложение и вычитание. Например: 37+28=64, 58-6=53. Предупреждению этих ошибок будет служить постоянное внимание к усвоению учениками табличных случаев сложения и вычитания, особенно к случаям с переходом через десяток. Для устранения ошибок необходима индивидуальная работа с учениками, допускающими их.

Неверный результат вследствие пропуска операций, входящих в прием, или выполнение лишних операций. Например: 64+30=97, 76 – 20=50. Эти ошибки возникают, как правило, в результате невнимательности учеников. Для их устранения необходимо научить и постоянно побуждать учеников выполнять проверку решения примеров. Заметим, что способ проверки путем прикидки результата здесь не подходит, так как получили сумму (97), которая больше каждого из слагаемых (64 и 30). Поэтому в данном случае используется проверка, основанная на связи между компонентами и результатом действий сложения и вычитания.

Смешивание действий сложения и вычитания. Например: 36+20=16, 46-7=53. Эти ошибки обусловлены недостаточным вниманием учеников. Эффективным средством устранения таких ошибок на данном этапе обучения является умение и привычка учеников выполнять проверку решения примеров. Здесь ошибка сразу выявляется, если сравнить результат с компонентами. Например, ученик выполнил сложение так: 36+20=16. Сравнив сумму (16) со слагаемыми (36 и 20), он сразу обнаруживает, что полученная сумма меньше каждого из слагаемых, значит, пример решен неверно.

Ошибки в устных приемах сложения и вычитания чисел, больших ста те же, что и при сложении и вычитании чисел в пределах ста. Для их устранения используются методические приемы, о которых говорилось выше.

Таким образом, предупреждению, а также устранению ошибок в вычислениях учеников помогает использование таких методических приемов, как: прием сравнения, т.е. выявление существенных сходств и различий в смешиваемых приемах для устных вычислений; прием анализа решения примеров для предупреждения смешивания арифметических действий; обсуждение с учениками неверных решений, в результате чего выявляется причина ошибок; учить детей выполнять проверку решения примеров соответствующими способами и постоянно воспитывать у них эту привычку.

Список использованной литературы:

  1. Бантова М.А. Ошибки учащихся в вычислениях и их предупреждение // Начальная школа. – 1989. – № 2.

  2. Бельтюкова Г.В. Методические ошибки при формировании у школьников вычислительных навыков // Начальная школа. – 1980. – №8.

  3. Белошистая А.В. Прием формирования устных вычислительных умений в пределах 100 // Начальная школа. – 2001. – №7.

  4. Фаддейчева Т.И. Обучение устным вычислениям // Начальная школа. – 2003. –№10.

  5. Федеральный государственный образовательный стандарт начального общего образования /Министерство образования и науки Российской Федерации. – М.: Просвещение, 2010. – 41 с.

Просмотров работы: 3566