РАСЧЕТ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИСПЫТАНИЙ ТВС РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ - Студенческий научный форум

IX Международная студенческая научная конференция Студенческий научный форум - 2017

РАСЧЕТ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИСПЫТАНИЙ ТВС РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ

Леонидова А.Б. 1, Витюк В.А. 1, Нургалиев Д.Н. 1
1Государственный университет имени Шакарима города Семей
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
В работе представлены результаты одного из этапов исследований по расчетному обоснованию режимов испытаний экспериментального устройства (ЭУ), предназначенного для изучения поведения модельной ТВС реактора на быстрых нейтронах в условиях тяжелой аварии с плавлением активной зоны в процессе испытаний в исследовательском реакторе. Целью исследований являлось разработка и проверка расчетной модели ЭУ, которая будет использоваться для определения оптимальной диаграммы энерговыделения в активной зоне исследовательского реактора (рисунок 1) и, следовательно, диаграммы энерговыделения в испытываемой ТВС. Такая диаграмма должна обеспечивать заданную последовательность событий в эксперименте при безусловном обеспечении безопасности испытаний. В эксперименте предполагается воссоздать следующую последовательность событий:

- разогрев ТВС до температуры плавления оболочек твэлов;

- последовательное плавление оболочек и топливных таблеток;

- формирование бассейна расплавленной стали и топлива в полости ТВС;

- проплавление двойной стальной стенки, разделяющей полость ТВС и полость трубы, заполненной натрием, иперемещение расплава топлива и стали в полость трубы.

Расчетные исследования выполнялись в программном комплексе ANSYSMechanical [1] с использованием нескольких моделей, описывающих геометрию и материальный состав ЭУ на каждом этапе испытаний. Свойства материалов принимались в соответствии с библиотекой материалов [2].Объемное распределение энерговыделения в топливе принималось по результатам проведенных ранее нейтронно-физических расчетов.

Рисунок 1. Варианты диаграммы изменения мощности реактора и энерговыделения в ТВС

Первая расчетная модель (рисунок 2,а), определяющая исходную конфигурацию активной части чехла ТВС, использовалась при расчете теплового состояния от момента начала реализации диаграммы энерговыделения в топливе до момента достижения оболочками твэлов среднемассовой температуры 1700 К (от 0 с до 15 с эксперимента).

После завершения расчета первой фазы эксперимента исходная модель была модифицирована (рисунок 2, б) в соответствии с предположением, что после 15 с происходит формирование бассейна расплавленной стали в доннойчасти полости чехла ТВС.

После завершения расчета второй фазы эксперимента модель была модифицирована (рисунок 2, в) в соответствии с предположением, что после 19с происходитформирование расплава топлива и нержавеющей стали в полости ТВС, при этом в модели принято допущение о пространственном разделении расплавов без смешивания.

После завершения расчета третьей фазы эксперимента модельбыла модифицирована (рисунок 2, г) в соответствии с предположением, что после 21 с происходит разрушение наружной стенки внутренней трубы.

Четвертая расчетная модель (рисунок 2, г) определяет конфигурацию элементов активной части чехла ТВС после разрушения наружной стенки внутренней трубы. Расчет с четвертой моделью проводится от момента контакта расплава топлива и стали с внутренней трубы до момента ее разрушения. Предполагается, что внутренняя стенка внутренней трубы будет расплавлена после того, как начнется процесс кипения натрия в ее полости (от 21,2 с до 27 с эксперимента).

 

– аргон;

– натрий;

– внутренняя труба;

– сталь корпус;

– оболочки;

– топливо (17%);

– топливо (0,27%);

– графит;

– вата;

– азот

 

1 2 3 4 5 6

1 – расплав; 2 – топливо; 3 ‑ внутренняя обечайка чехла;

4 – наружная обечайка чехла; 5 – внутренний корпус; 6 – силовой корпус

а - фрагмент исходной расчетной модели ЭУ

б - модель с расплавом нержавеющей стали в полостичехла ТВС

 

1 2 3 4 5 6

1 – расплав; 2 – топливо; 3 – внутренняя обечайка чехла;

4 – наружная обечайка чехла;

5 – внутренний корпус; 6 – силовой корпус

 

1 2 3 4 5 6 7

1 – внутренняя стенка внутренней трубы,

2 – расплав;

3 – топливо;

4 – внутренняя обечайка чехла;5 – наружная обечайка чехла; 6 – внутренний корпус; 7 – силовой корпус

в- модель с расплавом нержавеющей стали и топлива в полости чехла ТВС

г - модель после разрушения наружной стенкивнутренней трубы

Рисунок 2. Расчетные модели четырех фаз эксперимента.

Обсуждение результатов

Некоторые результаты первого этапа расчетов для варианта с максимальной мощностью в реакторе W = 196 Мвт диаграммы энерговыделения представлены на рисунке 3.

       

Стальные оболочки на 15 с

Топливо с бассейном расплавленной стали

Наружная стенка внутренней трубы

Расплав топлива

Рисунок 3. Тепловое состояние элементов ЭУ в эксперименте

В соответствии с результатами проведенных расчетов стальные оболочки достигают температуры плавления на 13,6 с. После идет формирование топлива с бассейном расплавленной стали. Топливо достигает температуры плавления на 17,6 с, до 19 с идет процесс частичного расплавления топлива. При дальнейшей реализации диаграммы, на 21 снаружная стенка внутренней трубы только начинает нагреваться. На 31 с расчета наружная стенка внутренней трубы не достигла температуры плавления, из чего можно сделать вывод, что рассматриваемый вариант диаграммы изменения энерговыделения в ТВС не обеспечивает требуемой последовательности событий в эксперименте.

Основным результатом проведенных исследований является то, что были разработаны и апробированы расчетные модели ЭУ, предназначенного для реакторных испытаний ТВС реактора на быстрых нейтронах. По результатам первого этапа расчетов были выработаны рекомендации по модификации диаграммы энерговыделения в топливе с целью определения ее оптимальной формы и длительности.

Список использованных источников

1 ANSYS release 14.5 Documentation for ANSYS WORKBENCH [Электронный ресурс]: ANSYS Inc.– Электрон. дан. и прогр.– [Б. м.], 2014.

2 Чиркин, В.С. Теплофизические свойства материалов ядерной техники:справочник.− Москва: Атомиздат, 1968.– 4-е изд.− 464 с.

Просмотров работы: 272