РИТМЫ МУЗЫКИ ЧЕРЕЗ МАТИМАТИКУ - Студенческий научный форум

IX Международная студенческая научная конференция Студенческий научный форум - 2017

РИТМЫ МУЗЫКИ ЧЕРЕЗ МАТИМАТИКУ

Литус А.А. 1, Стрелков В.В. 1
1Филиал Ростовского государственного университета путей сообщения в г. Минеральные Воды
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Математика – царица наук, тесным образом перекликается с музыкой. Музыка-это математика интуиции (О.Гуцуляк). Несомненно, математика пронизывает музыку. Музыка и ее первый звук родились одновременно с творением мира, как утверждали древние мудрецы. В своих трудах ученые неоднократно делали попытки представить музыку как некую математическую модель. Подтверждением является цитата из работы Леонарда Эйлера “Диссертация о звуке”,(1727 г.): “Моей конечной целью в этом труде было то, что я стремился представить музыку как часть математики и вывести в надлежащем порядке из правильных оснований все, что может сделать приятным объединение и смешивание звуков”. Свое отношение к математике и музыке ученые высказывали в своих личных переписках. Так, к примеру, Лейбниц в письме Гольдбаху пишет: “Музыка есть скрытое арифметическое упражнение души, не умеющей считать”. На что Гольдбах ему отвечает: “Музыка – это проявление скрытой математики”. Однако, одним из первых, кто попытался выразить красоту музыки с помощью чисел, был Пифагор. Он создал свою школу мудрости, положив в ее основу два предмета – музыку и математику. Музыка, как одно из видов искусств, воспринималась наряду с арифметикой, геометрией и астрономией как научная дисциплина, а не как практическое занятие искусством. Пифагор считал, что гармония чисел сродни гармонии звуков и что оба этих занятия упорядочивают хаотичность мышления и дополняют друг друга. Он был не только философом, но и математиком, и теоретиком музыки. Известно, что пифагорейцы пользовались специальными мелодиями против ярости и гнева. Они проводили занятия математикой под музыку, так как заметили, что она благотворно влияет на интеллект. Одним из достижений Пифагора и его последователей в математической теории музыки был разработанный ими «Пифагоров строй». Новая технология использовалась для настройки популярного в то время инструмента – лиры.

Существуют различные уровни восприятия музыки. Такие как: Физический - музыкальные звуки являются периодическими колебаниями воздуха. Поэтому их можно изучать методами физики. Биологический - звуки интересны нам постольку, поскольку они воспринимаются, интерпретируются и воспроизводятся человеком. Культурный - несмотря на то, что все люди – HomoSapiens, в разных культурах возникают различные музыкальные традиции. Различия наблюдаются как между этносами, так и между различными уровнями развития. Математический -математика является вполне подходящим средством для описания музыкальных моделей. Могут ли чисто математические результаты иметь интересную интерпретацию в музыке является для автора спорным. Пифагор, по распространённой версии, пытался свести всеобщую гармонию к числам. Мы же будем к таким идеям подходить более осторожно.

Четких границ между уровнями нет. Одно и то же явление может простираться через несколько уровней. Почему, например, интервал октава звучит для человека очень приятно? Можно представить это как аксиому биологического уровня, а можно свести к физическому: звуки, различающиеся по частоте вдвое, дают то же множество обертонов, что и нижний из них. Поэтому они практически сливаются. А математически октава описывается числом 2, которое является наименьшим простым числом. На любом уровне, однако, существуют явления, несводимые к предыдущему уровню.

В основе этой музыкальной системы были два закона, которые носят имена двух великих ученых - Пифагора и Архита. Вот эти законы:

1. Две звучащие струны определяют консонанс, если их длины относятся как целые числа, образующие треугольное число 10=1+2+3+4, т.е. как 1:2, 2:3, 3:→4. Причем, чем меньше число n в отношении n:(n+1) (n=1,2,3), тем созвучнее получающийся интервал.

2. Частота колебания w звучащей струны обратно пропорциональна ее длине l .w = a : l , где а - коэффициент, характеризующий физические свойства струны.

У древних греков построение музыкальной гаммы было простым и удобным и до сих пор применяется при настройке музыкальных инструментов.

Оказывается, гамму можно построить, пользуясь лишь совершенными консонансами - квинтой и октавой. Суть этого метода состоит в том, что от исходящего звука, например"до" (3/2)0 = 1, мы движемся по квартам вверх и вниз и полученные звуки собираем в одну октаву. И тогда получаем: (3/2)1= 3/2 - соль, (3/2)2:2 = 9/8 - ре, (3/2)3:2 =27/16 - ля, (3/2)4:22 = 81/64 - ми, (3/2)5: 22 = 243/128 - си, (3/2)-1:2 =4/3 - фа. (Все математические расчеты выполняем на компьютере, используя программу “Калькулятор”.)

Исследование музыкального произведения Г. Гладкова «Бременские музыканты». Попробуем сделать математическую модель этого произведения: каждой ноте мы присвоили номер ступени. Цифра 1 – I ступень, 2 – II ,3 – III, 4 – IV, 5 – V ,6 – VI ,7 – VII, 8 – I, 9 – II ,0 – III. Переложили ноты на числа и получили при этом такой ряд чисел: 11123313 / 535 / 44432246 / 545 / 3353 / 666716 / 22217572 / 176 / 4561 / 7672 / 321117 / 176213 / 444443 / 22221 /.Черта между цифрами служит тактовой четой, то есть делит их на такты, так как сделано в произведении.

В музыке есть понятие – устойчивые ступени, на которых строится тоническое трезвучие (Т5/3): 1, 3, 5 ступени. Если в каждом полном такте сложить номера устойчивых ступеней, то мы заметим следующую закономерность. В первом такте сумма равна 13 (1+1+1+3+3+1+3), во II – тоже 13 (5+5+3), в III – 3 (3), в IV – 10 (5+5), в V – 14 (3+3+5+3), в VI – 1, в VII – 6 (5+1), в VIII – 1, в IX – 6 (5+1), в X – 0, в XI – 6 (3+1+1+1), в XII – 4 (1+3), в XIII – 3, в XIV – 1. Получили ряд чисел: 13, 13, 3, 10, 14, 1, 6, 1, 6, 0, 6, 4, 3, 1.

Вывод: Следовательно, наблюдаем, что в произведении повторяется группа цифр: 14, 13, 10, 6, 4, 3 ,1, 0.

Теперь попробуем перемножить в каждом такте номера ступеней. Получили числа в соответствии с номерами тактов:

I. 54 (1*1*1*2*3*3*1*3); II. 75 (5*3*5); III. 18432 (4*4*4*3*2*2*4*6); IV.100 (5*4*5); V. 135 (3*3*5*x3); VI. 9072 (6*6*6*7*1*6); VII. 3920 (2*2*2* 1*7*5*7*2); VIII. 12 (1*7*6); IX. 120 (4*5*6*1); X. 288 (7*6*7*2); XI. 336 (3*2*2 *2*2*7); XII. 252 (1*7*6*2*1*3); XIII. 3072 (4*4*4*4*4*3); XIV. 16 (2*2*2*2*1).

Имеем следующий ряд чисел: значения в I (11123313) и II (535); III (44432246) и XIII (444443); VI (666716), VIII (176) и XIV (22221); XI (322227), IX (4561) и VII (22217572) тактах получились разные за счёт того, что количество нот в них различное.

Искусствоведы составили схемы, в которых содержится геометрический анализ великой музыки. Наиболее удачным в этом отношении примером является Хроматическая фантазия и Фуга ре минор И.С.Баха. Слушая это великолепное произведение, не только восторгаешься красотой музыки, но и чувствуешь ее скрытую музыкальную гармонию. А математика открывает еще одну грань гениальности великого композитора. В истории культуры достаточно много примеров, когда люди придумывали механические устройства для сочинения музыки. Это происходило и в средние века, и в наше время. Математик из колумбийского университета Дж. Шиллингер в 1940 году опубликовал разработанную им математическую систему музыкальной композиции в виде отдельной книжечки под названием "Калейдофон". Считают, что Дж.Гершвин, работая над оперой "Порги и Бесс, пользовался той же системой. В 1940 году Эйгор Вилли Лобос, используя описанный способ, превратил силуэт Нью-Йорка в пьесу для фортепиано.

Известно, что и компьютеры сочиняют музыку. Правда, она довольно посредственна. В ней нет игры и свободного дыхания, которые трудно укладываются в математические каноны. До сих пор никому не удавалось найти алгоритм, порождающий простую и красивую мелодию. Мы просто не знаем, какое волшебство происходит в голове композитора, создающего неповторимую мелодию. Гениальное произведение – это результат вдохновения и мастерства его создателя. А еще своеобразная тайна, постичь которую порой невозможно. Решая задачи и слушая великую музыку, мы открываем в ней совершенство, простоту, гармонию и еще нечто такое, что неподвластно выражению словом.

Информационные источники

1.Жмудь Л. Я. Пифагор и его школа М.: Наука, 1990, 192с.

2. Энциклопедия для детей. Т. 7. Искусство. Ч. 1. – Э68-е изд., испр./Глав. Ред. М.Д. Аксенова. М..6 Аванта, 2006. 688 с.

3. Деплан И. Я. Мир чисел. М.: «Просвещение», 2005.

4.https://ru.wikibooks.org/wiki/теория музыки для математиков / Уровни музыкальных рассуждений

5. https://ru.wikiquote.org/wiki/Математика в музыке

6. http://studentbank.ru/view.php?id=54930

Просмотров работы: 347