РАДИОАКТИВНЫЕ ИЗЛУЧЕНИЯ, ИХ ВЛИЯНИЕ НА ОРГАНИЗМ ЧЕЛОВЕКА. СПОСОБЫ ЗАЩИТЫ ОТ РАДИАЦИИ - Студенческий научный форум

IX Международная студенческая научная конференция Студенческий научный форум - 2017

РАДИОАКТИВНЫЕ ИЗЛУЧЕНИЯ, ИХ ВЛИЯНИЕ НА ОРГАНИЗМ ЧЕЛОВЕКА. СПОСОБЫ ЗАЩИТЫ ОТ РАДИАЦИИ

Чотчаев Р.О. 1, Френкель Е.Э. 1
1Вольский военный институт материального обеспечения
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Введение

С давних времен человек совершенствовал себя, как физически, так и умственно, постоянно создавая и совершенствуя орудия труда. Постоянная нехватка энергии заставляла человека искать и находить новые источники, внедрять их не заботясь о будущем. Таких примеров множество: паровой двигатель побудил человека к созданию огромных фабрик, что за собой повлекло мгновенное ухудшение экологи в городах. Другим примером служит создание каскадов гидроэлектростанций, затопивших огромные территории и изменившие до неузнаваемости экосистемы отдельных районов. В порыве за открытиями в конце XIX в. двумя учеными: Пьером Кюри и Марией Склодовской-Кюри было открыто явление радиоактивности. Именно это достижение поставило существование всей планеты под угрозу. За 100 с лишним лет человек наделал столько глупостей, сколько не делал за все свое существование. Давно уже прошла Холодная война, мы уже пережили Чернобыль и многие засекреченные аварии на полигонах, однако проблема радиационной угрозы никуда не ушла и посей день служит главной угрозой биосфере.

Радиация играет огромную роль в развитии цивилизации на данном историческом этапе. Благодаря явлению радиоактивности был совершен существенный прорыв в области медицины и в различных отраслях промышленности, включая энергетику. Но одновременно с этим стали всё отчётливее проявляться негативные стороны свойств радиоактивных элементов: выяснилось, что воздействие радиационного излучения на организм может иметь трагические последствия. Подобный факт не мог пройти мимо внимания общественности. И чем больше становилось известно о действии радиации на человеческий организм и окружающую среду, тем противоречивее становились мнения о том, насколько большую роль должна играть радиация в различных сферах человеческой деятельности.

К сожалению, отсутствие достоверной информации вызывает неадекватное восприятие данной проблемы. Газетные истории о шестиногих ягнятах и двухголовых младенцах сеют панику в широких кругах. Проблема радиационного загрязнения стала одной из наиболее актуальных. Поэтому необходимо прояснить обстановку и найти верный подход. Радиоактивность следует рассматривать как неотъемлемую часть нашей жизни, но без знания закономерностей процессов, связанных с радиационным излучением, невозможно реально оценить ситуацию.

Для этого создаются специальные международные организации, занимающиеся проблемами радиации, в их числе существующая с конца 1920-х годов Международная комиссия по радиационной защите (МКРЗ), а также созданный в 1955 году в рамках ООН Научный Комитет по действию атомной радиации (НКДАР).

Радиоактивность – это природное явление, когда происходит самопроизвольный распад ядер атомов, при котором возникают излучения. Эти излучения имеют большую энергию и способны ионизировать в той или иной степени любое вещество, например:

  • воздух;

  • воду;

  • металлы;

  • строительные материалы;

  • человеческий организм и т. д.

Ионизация вещества всегда сопровождается изменением его основных физико-химических свойств, а для биологической ткани, например, организма человека – нарушением её жизнедеятельности, что в конечном итоге может привести к тяжелым заболеваниям или даже вызвать гибель организма.

Ионизирующая способность радиоактивного излучения зависит от его типа и энергии, а также свойства ионизирующего вещества и оценивается удельной ионизацией, которая измеряется количеством ионов этого вещества, создаваемых излучением на расстоянии в 1 см.

Поражение человека радиоактивными излучениями возможно от источников как искусственного, так и естественного происхождения.

В настоящее время основными искусственными источниками радиоактивного загрязнения окружающей среды являются:

  • урановая промышленность, которая занимается добычей, переработкой, обогащением и приготовлением ядерного топлива;

  • ядерные реакторы разных типов, в активной зоне которых сосредоточены большие количества радиоактивных веществ;

  • радиохимическая промышленность, на предприятиях которой производится регенерация (переработка и восстановление) отработанного ядерного топлива;

  • места переработки и захоронения радиоактивных отходов из-за случайных аварий, связанных с разрушением хранилищ, также могут явиться источниками загрязнения окружающей среды;

  • использование радионуклидов в народном хозяйстве в виде закрытых радиоактивных источников в промышленности, медицине, геологии, сельском хозяйстве и других отраслях;

  • ядерные взрывы и возникающее после взрыва радиоактивное загрязнение местности (могут быть как локальные, так и глобальные выпадения радиоактивных осадков).

Естественные источники излучения, производящие этот фон, разделяют на две категории: внешнего и внутреннего облучения.

  • Внешнее облучение создается радиоактивными веществами, находящимися вне организма, к которым можно отнести космические излучения, солнечную радиацию, излучения от различных радиоактивных горных пород земной коры и т.д.

  • Внутреннее облучение создается радиоактивными веществами, попавшими внутрь организма с воздухом, например радиоактивный газ Радон, который прорывается на поверхность из глубины земных недр, а также с водой и пищей – когда загрязнение сельхозяйственной продукции и других продуктов питания происходит при выпадении радиоактивных осадков в некоторых районах Земли. Радон – тяжелый газ без вкуса, запаха и, при этом, невидимый. Радон высвобождается из земной коры повсеместно, но его концентрация в наружном воздухе существенно различается в разных точках земного шара.

Как ни парадоксально это может показаться на первый взгляд, но основное излучение от радона человек получает, находясь в закрытом, непроветриваемом помещении. Радон концентрируется внутри помещений лишь тогда, когда они в достаточной мере изолированы от внешней среды. Просачиваясь через фундамент и пол из грунта или, реже, высвобождаясь из стройматериалов, радон накапливается в помещении.

Герметизация помещений с целью утепления только усугубляет ситуацию, поскольку при этом еще более затрудняет вывод радиоактивного газа наружу.

Самые распространенные стройматериалы – дерево, кирпич и бетон – выделяют относительно немного радона. Гораздо большей удельной радиоактивностью обладают гранит, пемза, изделия из глиноземного сырья и фосфогипса.

Еще один, как правило, менее важный, источник поступления радона в жилые помещения представляет собой вода и природный газ. Концентрация радона в обычно используемой воде чрезвычайно мала, но вода из глубоких колодцев или артезианских скважин содержит очень много радона.

Однако основная опасность исходит вовсе не от питья воды даже при высоком содержании в ней радона. Обычно люди потребляют большую часть воды в составе пищи и в виде горячих напитков, а при кипячении воды или приготовлении горячих блюд радон почти полностью улетучивается.

Наибольшую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом, что чаще всего происходит в ванной комнате или в парилке (парной бани или сауны).

Также концентрация радона в помещении может заметно возрасти, если кухонные плиты и другие нагревательные газовые приборы не снабжены вытяжкой. При наличии же вытяжки, которая сообщается с наружным воздухом, концентрации радона в этих случаях не происходит.

  • При внешнем облучении наиболее опасны излучения, имеющие высокую проникающую способность.

  • При внутреннем облучении наиболее опасны излучения, имеющие высокую ионизирующую способность.

Считается, что внешнее облучение менее опасно, так как от него нас защищают стены помещений, одежда, кожный покров, специальные средства защиты и др.

Внутреннее же облучение воздействует на незащищенные ткани и органы, т.е. системы организма человека, причем на молекулярно-клеточном уровне. Поэтому внутреннее облучение воздействует на организм больше, чем такое же внешнее.

Радиоактивное излучение бывает трех типов: альфа-, бета- и гамма-излучение.

Альфа-излучение отклоняется электрическим и магнитным полями, обладает высокой ионизирующей и малой проникаю­щей способностью (например, поглощается слоем алюминия толщиной примерно 0,05 мм.). Это поток ядер гелия.

Бета-излучение отклоняется электрическим и магнитным по­лями. Его ионизирующая способность значительно меньше (при­мерно на два порядка), а поглощающая, гораздо больше (по­глощается слоем алюминия толщиной примерно 2 мм), чем у альфа-частиц. Это поток электронов или позитронов. Коэффи­циент поглощения бета-излучения, которое сильно рассеивается в веществе, зависит не только от свойств вещества, но и от раз­меров и формы тела, на которое падает бета-излучение.

Гамма-излучение не отклоняется электрическим и магнитным полями, обладает относительно слабой ионизирующей способ­ностью и очень большой проникающей способностью (напри­мер, проходит через слой свинца толщиной 5 см). При прохож­дении через кристаллическое вещество наблюдается дифракция гамма-излучения. Гамма-излучение – это коротковолновое элек­тромагнитное излучение с чрезвычайно малой длиной волны – меньше 10-10 м. Многие радиоактивные процессы сопровожда­ются излучением гамма-квантов.

В начальный период исследования радиоактивного излуче­ния приходилось иметь дело с проникающим рентгеновским из­лучением, распространяющимся в воздухе. Поэтому в качестве количественной меры излучения многие годы применяли ре­зультат измерений ионизации воздуха вблизи рентгеновских трубок и аппаратов. Позднее пыла установлена экспозиционная доза – количественная характеристика ионизирующею излучения. Единица экспозиционной дозы – рентген (Р), 1 Р = 2·109пар ионов в 1 см3 воздуха при атмосферном давлении. В практической дозиметрии часто применяется мощность экспозиционной дозы, равная экспозиционной дозе в единицу времени.

Изучение последствий облучения живого организма привело к заключению, что радиобиологический эффект зависит не только от поглощенной дозы, т.е. энергии, переданной облученному веществу, но и от других факторов. При одной и той же погло­щённой дозе радиобиологический эффект тем выше, чем мощнее ионизация, создаваемая излучением. Для количественной оценки такого влияния вводится понятие эквивалентной дозы. Единица эквивалентной дозы – зиверт (Зв), названная в честь известного шведского радиобиолога Г.Р. Зиверта. Иногда используется другая единица эквивалентной дозы – бэр (1 3в =100 бэр).

Источники радиоактивного излучения

Основную часть облучения население Земли получает от естест­венных источников радиоактивного излучения. Большинство из них таковы, но избежать облучения от них совершенно невоз­можно. На протяжении всей истории существования Земли раз­ные виды излучения падают на ее поверхность из космоса и по­ступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя путями. Радиоактивные вещества могут находиться вне организма и облучать его снару­жи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе, которым дышит человек, в пище или воде и попасть внутрь организма. Такой способ облучения на­зывают внутренним. Облучению от естественных источников радиации подвергается любой житель Земли, однако одни из них получают большие дозы, чем другие. Это зависит, в частно­сти, от того, где они живут. Уровень радиации в некоторых мес­тах земного шара, где залегают радиоактивные породы, оказывается значительно выше среднего, а в других местах – соответст­венно ниже.

Доза облучения зависит, кроме того, от условий жизни лю­дей. Применение некоторых строительных маршалов, исполь­зование газа для приготовления пищи, открытых угольных жаровень, герметизация помещений и даже полеты на самолётах – все эти сказывается на уровне облучения за счет естественных источников радиации. Земные источники радиации в сумме от­ветственны за большую часть облучения, которому подвергается человек за счет естественной радиации. В среднем они дают бо­лее 5/6 годовой эквивалентной дозы. получаемой населением в основном вследствие внутреннего облучения. Остальную часть вносят космические лучи, главным образом путем внешнего об­лучения. Рассмотрим вначале некоторые данные о внешнем облучении от источников космического происхождения.

Космические лучи. Естественный радиационный фон, созда­ваемый космическими лучами, дает чуть меньше половины внешнего облучения, получаемого населением от естественных источников радиации. Космические лучи в основном приходят к нам из глубин Вселенной, но некоторая их часть рождается на Солнце во время солнечных вспышек. Космические лучи могут достигать поверхности Земли или взаимодействовать с её атмо­сферой, порождая вторичное излучение и приводя к образова­нию различных радионуклидов. Нет такого места на Земле, куда бы не падали невидимые космические лучи. Но одни участки земной поверхности более подвержены их действию, чем другие. Северный и Южный полюсы получают больше радиации, чем экваториальные области, из-за наличия у Земли магнитного но­ля, отклоняющего заряженные частицы, из которых в основном и состоят космические лучи.

Существеннее, однако, то, что уровень облучения растет с высотой, поскольку при этом над нами остается все меньше воздуха, играющего роль защитного экрана. Люди, живущие на уровне моря, получают в среднем из-за космических лучей эк­вивалентную дозу около 300 мкЗв/год; для людей же, живущих выше 2000м над уровнем моря, эта величина в несколько раз больше.

Еще более интенсивному, хотя и относительно непродолжи­тельному облучению, подвергаются экипажи и пассажиры само­летов. При подъеме с высоты 4000м (максимальная высота, на которой расположены поселения людей: деревни шерпов на склонах Эвереста) до 12 000 м (максимальная высота полета трансконтинентальных авиалайнеров) уровень облучения за счет космических лучей возрастает примерно в 25 раз и продолжает расти при дальнейшем увеличении высоты до 20 000м (макси­мальная высота полета сверхзвуковых реактивных самолетов) и выше. При перелете из Нью-Йорка в Париж пассажир обычного турбореактивного самолета получает дозу около 50 мкЗв, а пас­сажир сверхзвукового самолета на 20 % меньше, хотя подвергает­ся более интенсивному облучению. Это объясняется тем, что во втором случае перелет занимает гораздо меньше времени.

Земные радиоактивные источники излучения. Основные ра­диоактивные изотопы, встречающиеся в горных породах Земли – это калий-40, рубидий-87 и изотопы двух радиоактивных семейств, берущих начало соответственно от урана-238 и тория-232 – долгоживущих изотопов, входящих в состав Земли с самого ее рождения. Разумеется, уровни земной радиации неодинаковы для разных мест земного шара и зависят от концентрации ра­дионуклидов в том или ином участке земной коры. В местах проживания основной массы населения они примерно одного порядка. Мощность эквивалентной дозы естественного радиоак­тивного фона на Земле составляет в среднем 1 м3в/год, или около 0,12 мк3в/час. Для сравнения укажем, что просмотр одного хоккейного матча по телевизору дает дозу около 0,01 мк3в.

Облучение в 5 м3в за год (или 0,5–0,6 мкЗв/час) считается до­пустимым для населения (для персонала АЭС – в 10 раз больше), гак же, как и разовая доза 0,1–0,2 Зв при аварийном облучении.

При получении однократной дозы, начиная с 0,5 Зв, наблю­дается кратковременное изменение состава крови и нарушение работы желудочно-кишечного тракта. При дозе в 1 Зв и более развиваются симптомы лучевой болезни различной степени тя­жести- Доза в 4,5 38 является половинной летальной дозой, т.е. при её получении погибает 50 % облучённых, а доза 6 Зв безусловно смертельна.

Согласно исследованиям, проведенным во Франции, ФРГ, Италии, Японии и США, примерно 95 % населения этих стран живет в местах, где мощность дозы облучения в среднем состав­ляет от 0,3 до 0,6 мЗв/год. Некоторые группы населения полу­чают значительно большие дозы облучения: около 3 % получает в среднем 1 мЗв/год, а примерно 1,5 % – более 1,4 мЗв/год.

Есть, однако, такие места, где уровни земной радиации на­много выше. Например, на небольшой возвышенности, расположенной в 200 км от Сан-Паулу в Бразилии, уровень радиации в ЯОО раз превосходна средний и достигает примерно 251 мЗв/год. По каким-то причинам возвышенность оказалась необитаемой. Лишь чуть меньшие уровни радиации были зарегистрированы на морском курорте Гуарапари с населением примерно 12000 человек, расположенном в 600км к востоку от этой возвышен­ности. Каждое лето Гуарапари становится местом отдыха при­мерно 30000 курортников. На отдельных участках его пляжей зарегистрирован уровень радиации 175 мЗв/год. Радиация на улицах города намного ниже – от 8 до 15 мЗв/год, но всё же значительно превышает средний уровень.

Сходная ситуация наблюдается в рыбацкой деревушке Меаипе, расположенной в 50 км к югу от Гуарапари. Оба населен­ных пункта стоят на песках, богатых торием.

В другой части земного шара на юго-западе Индии 70000 че­ловек живут на узкой прибрежной полосе длиной 55км, вдоль которой также тянутся пески, богатые торием. Исследования, охватившие 8513 человек из числа проживающих на этой терри­тории, показали, что данная группа лиц получает в среднем 3,8 м3в/год на человека. Из них более 500 человек получают свыше 8,7 м3в/год. Около шестидесяти человек получают годо­вую дозу, превышающую 17 м3в/год, что существенно превыша­ет годовую дозу внешнего облучения от земных источников ра­диации.

Территории в Бразилии и Индии – наиболее хорошо изу­ченные «горячие точки» нашей планеты. Но в Иране, например в районе городка Рамсер, где бьют ключи, богатые радием, были зарегистрированы уровни радиации 400 мЗв/год. Известны и другие места на земном шаре с высоким уровнем радиации, на­пример во Франции, Нигерии, на Мадагаскаре.

Источники внутреннего облучения. В среднем примерно 2/3 эффективной эквивалентной дозы облучения, которую чело­век получает от естественных источников радиации, поступает от радиоактивных веществ, попавших в организм с пищей, во­дой и воздухом. Совсем небольшая часть этой дозы приходится на радиоактивные изотопы типа углерода-14 и трития, которые образуются под действием космических лучей. Всё остальное поступает от источников земного происхождении. В среднем че­ловек получает около 180 мкЗв/год за счёт калия-40, который усваивается организмом вместе с нерадиоактивными изотопами калия, необходимыми для жизнедеятельности организма.

Значительно большую дозу внутреннего облучения человек получает от нуклидов радиоактивного ряда урана-238 и в мень­шей степени – от радионуклидов ряда тория-232. Некоторые из них, например нуклиды свинца и полония, поступают в орга­низм с пищей. Они концентрируются в рыбе и моллюсках, по­этому люди. потребляющие мною рыбы и других даров моря. могут получить относительно высокие дозы облучения.

Десятки тысяч людей на Крайнем Севере питаются в основ­ном мясом северного оленя (карибу), в котором радиоактивные изотопы свинца я полония присутствуют в довольно высокой концентрации. Особенно велико содержание полония-210. Эти изотопы попадают в организм оленей зимой, когда они питают­ся лишайниками, в которых накапливаются оба изотопа. Дозы внутреннего облучения человека от полония-210 в этих случаях могут в 35 раз превышать средний уровень.

В другом земном полушарии люди, живущие в Западной Ав­стралии в местах с повышенной концентрацией урана, получают дозы облучения, в 75 раз превосходящие средний уровень, по­скольку едят мясо и требуху овец и кенгуру. Прежде чем по­пасть в организм человека, радиоактивные вещества, как и в рассмотренных выше случаях, проходят по сложным маршрутам в окружающей среде, и это приходится учитывать при оценке доз облучения, полученных от какого-либо источника.

Искусственные источники радиоактивного излучения. За по­следние несколько десятилетий человек создал сотни искусст­венных радионуклидов и научился использовать энергию атома в самых разных целях: в медицине, для создания атомного ору­жия, для производства энергии и обнаружения пожаров, для изготовления светящихся циферблатов часов и поиска полезных ископаемых. Все это приводит к увеличению дозы облучения Как отдельных людей, так и населения Земли в целом. Индиви­дуальные дозы, получаемые равными людьми от искусственных источников радиации, сильно различаются- В большинстве слу­чаев эти дозы весьма невелики, но иногда облучение за счет техногенных источников оказывается во много тысяч раз интен­сивнее, чем за счет естественных. Как правило, для техногенных источников радиации упомянутые различия выражены гораздо сильнее, чем для естественных. Кроме того, порождаемое им излучение обычно легче контролировать, хотя облучение, свя­занное с радиоактивными осадками от ядерных взрывов, почти так же невозможно контролировать, как и облучение, обуслов­ленное космическими лучами или земными источниками.

Одним из основных физических способов предотвращения облучения является экранирование. Специально разработанные защитные костюмы и экраны позволяют обеспечить достаточно безопасное пребывание человека в условиях радиации.

Каждому излучению свой экран.

Существует несколько видов ионизирующего излучения, каждый их которых имеет свои особенности с точки зрения взаимодействия с веществом. Чтобы противостоять им, при изготовлении средств защиты используются различные материалы.

  • Альфа-излучение характеризуются низкой проникающей способностью и воздействует на организм только в непосредственной близости от источника излучения. Поэтому даже лист бумаги, резиновые перчатки, пластиковые очки и простой респиратор будут для него непреодолимым препятствием. При этом респиратор является особенно важной частью защитного костюма, т.к. попавшие внутрь организма альфа-частицы накапливаются в клетках органов и долго не распадаются, отравляя организм.

  • Бета-излучение обладает большей, чем альфа-излучение проникающей способностью, которая зависит от энергии его частиц. А это значит, что средства, предназначенные для защиты от альфа-излучения, при потоке бета-частиц не эффективны. Поэтому используются плексиглас, стекло, тонкий слой алюминия, противогаз.

  • Гамма-излучение распространяется на большие расстояния и проникает практически сквозь любую поверхность. Исключение составляют тяжёлые металлы типа вольфрама, свинца, стали, чугуна и пр., именно они и применяются для защиты.

  • Нейтронное излучение – продукт ядерного распада с проникающей способностью, превосходящей гамма-излучение. Лучшей защитой от нейтронного излучения являются такие материалы, как вода, полиэтилен, другие полимеры. Нейтронное излучение обычно сопровождается гамма-излучением, поэтому зачастую в качестве защиты применяют многослойные экраны или растворы гидроксидов тяжелых металлов.

Как защитить себя от радиации?

Несмотря на высокую опасность, которую несет в себе практически любой источник радиации, методы защиты от облучения все же существуют. Все способы защиты от радиационного воздействия можно разделить на три вида: время, расстояние и специальные экраны.

Защита временем

Смысл этого метода защиты от радиации заключается в том, чтобы максимально уменьшить время пребывания вблизи источника излучения. Чем меньше времени человек находится вблизи источника радиации, тем меньше вреда здоровью он причинит. Данный метод защиты использовался, к примеру, при ликвидации аварии на АЭС в Чернобыле. Ликвидаторам последствий взрыва на атомной электростанции отводилось всего несколько минут на то, чтобы сделать свою работу в пораженной зоне и вернуться на безопасную территорию. Превышение времени приводило к повышению уровня облучения и могло стать началом развития лучевой болезни и других последствий, которые может вызывать радиация.

Противорадиационные экраны и спецодежда

В некоторых ситуациях просто необходимо осуществлять какую-либо деятельность в зоне с повышенным радиационным фоном. Примером может быть устранение последствий аварии на атомных электростанциях или работы на промышленных предприятиях, где существуют источники радиоактивного излучения. Находиться в таких зонах без использования средств индивидуальной защиты опасно не только для здоровья, но и для жизни. Специально для таких случаев были разработаны средства индивидуальной защиты от радиации. Они представляют собой экраны из материалов, которые задерживают различные виды радиационного излучения и специальную одежду.

Защитный костюм против радиации

Из чего делают средства защиты от радиации?

Как известно, радиация классифицируется на несколько видов в зависимости от характера и заряда частиц излучения. Чтобы противостоять тем или иным видам радиационного излучения средства защиты от него изготавливаются с использованием различных материалов:

  • Обезопасить человека от альфа-излучения, помогают резиновые перчатки, «барьер» из бумаги или обычный респиратор.

  • Если в заражённой зоне преобладает бета-излучение, то для того, чтобы оградить организм от его вредного воздействия потребуется экран из стекла, тонкого алюминиевого листа или такой материал, как плексиглас. Для защиты от бета-излучения органов дыхания обычным респиратором уже не отделаться. Тут потребуется противогаз.

  • Сложнее всего оградить себя от гамма-излучения. Обмундирование, которое обладает экранирующим действием от такого рода радиации, выполняется из свинца, чугуна, стали, вольфрама и других металлов с высокой массой. Именно одежда из свинца использовалась при проведении работ на Чернобыльской АЭС после аварии.

  • Всевозможные барьеры из полимеров, полиэтилена и даже воды эффективно предохраняют от вредного воздействия нейтронных частиц.

Вывод.

  • Радиация является одним из самых опасных для человека физических процессов, неконтролируемое воздействие которого может привести к фатальным последствиям.

  • Особенно опасным для подвальных и цокольных помещений, а также для нижних этажей домов и сооружений, является радиоактивный газ радон. Поднимаясь по разломам земной коры, он попадает в подвалы и полуподвалы, и по вентиляционным шахтам и лестничным клеткам с потоками воздуха устремляется на верхние этажи.

Литература

1. Гончаренко Е.Н., Кудряшов Ю.Б. Химическая защита от лучевого поражения. – М.: Изд-во МГУ, 1985

2. Саксонов П.П., Шашков В.С. Сергеев П.В. Радиационная фармакология. М.: Медицина, 1976.

3. Военная токсикология, радиобиология и медицинская защита. – Под ред. С.А. Куценко. – СПб.: Фолиант. – 2004.

 

12

 

Просмотров работы: 5212