АНАЛИЗ НЕФТЕПРОДУКТОВ МЕТОДОМ ИК-СПЕКТРОСКОПИИ - Студенческий научный форум

VIII Международная студенческая научная конференция Студенческий научный форум - 2016

АНАЛИЗ НЕФТЕПРОДУКТОВ МЕТОДОМ ИК-СПЕКТРОСКОПИИ

Тестов Д.С. 1, Полотнянко Н.А. 1, Фадейкина И.Н. 1
1Государственный университет "Дубна"
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Среди многочисленных задач, которые ежедневно встают перед химиками-аналитиками, в настоящее время наиболее актуальной является идентификация материалов природного и техногенного происхождения - установление субъекта загрязнения окружающей среды, установление происхождения и подлинности материала и т.д.

ИК-спектроскопия является одним из важнейших методов анализа, она обширно используется для качественного и количественного определения реакционных смесей и структуры неизвестных соединений.

Известно, что нефтепродукты играют ведущую роль в жизни человека. Они образуются в результате обработки нефтей и широко применяются в повседневной жизни. Результатами обработки нефти и нефтепродуктов являются такие материалы, как резина, пластмасса, синтетические ткани, моющие средства и многое другое, наиболее известные нефтяные продукты — дизельное горючее, мазут, керосин, бензин. Для изучения состава нефти, природных вод на наличие нефтепродуктов, широко применяют спектральный анализ.

Цель работы: Анализ веществ, входящих в состав нефтепродуктов, методом ИК-спектроскопии.

Практические задачи:

  • С помощью метода ИК-спектроскопии идентифицировать:

  • чистые вещества, входящие в состав нефтепродуктов

  • модельные смеси

  • нефтепродукты (на примере бензина)

  • Освоить количественный анализ определения веществ, входящих в состав нефтепродуктов, методом ИК-спектроскопии

Сравнение методов определения содержания нефтепродуктов в воде

Как известно, аналитическое определение нефти и нефтепродуктов, особенно в водных объектах, является очень важной и актуальной задачей, сравнительная характеристика основных методов определения содержания нефтепродуктов в воде представлена в таблице 1.

Таблица 1. Методы определения содержания нефтепродуктов в воде.

Наименование характеристики

Метод

ИК-спектроскопия

Флуориметрия

Газовая хроматография

Гравиметрия

Диапазон измерения, мг/дм3

0,05-50

0,005-50

0,1(0,02)-150

Не менее 0,3

Определяемые вещества

Органические соединения,

Неорганические соли с ковалентной связью

Сложные органические вещества

Неполярные и малополярные углеводороды

Все классы веществ

Объем пробы, см3

До 2000

100

1000

3000

Экстрагент

CCl4

C6H14

C6H14,C5H12,изогексан,

петролейный

эфир

CHCl3, C6H14, CCl4, C5H12, петролейный эфир

Область определения, см-1

4000-400

50000-5000

   

Погрешность определения при P=0,95

До 0,5 мг/дм3=50%

От 0,5 мг/дм3=25%

До 0,01 мг/дм3=65%

До 0,5 мг/дм3=40%

До 50 мг/дм3=25%

До 0,5 мг/дм3=50%

От 0,5 мг/дм3=25%

 

Норматив воспроизводимости

До 0,5 мг/дм3=65%

От 0,5 мг/дм3=35%

 

До 0,5 мг/дм3=25%

От 0,5 мг/дм3=13%

 

Время анализа

до 1 мин

 

Несколько минут

От нескольких мин до нескольких часов

Сущность ИК-спектроскопии

Инфракрасная (ИК) спектроскопия является одним из наиболее мощных аналитических методов и повседневно используется в фундаментальных и прикладных исследованиях, а также для контроля производственных процессов. Наиболее широко применяется в настоящее время методика спектрального анализа в инфракрасной (ИК) области – Фурье-ИК. Параметры современных Фурье-ИК спектрометров среднего и нижнего ценового диапазона по своим параметрам стали сравнимы с традиционными дифракционными спектрометрами и сейчас используются во многих аналитических лабораториях. Необходимым компонентом этих приборов, наряду с оптикой, является управляющий компьютер, используемый как для управления процессом получения спектра, так и для обработки данных.[1]

С помощью ИК спектрометра можно получить колебательный спектр исследуемого соединения. ИК спектрометры, в которых информация о поочередно вырезаемых щелью спектральных интервалах регистрируется последовательно во времени, называют сканирующими. По мере сканирования каждого такого спектрального интервала, ширина которого определяется спектральной шириной щели, энергия излучения воспринимается одноканальным приемником. Приборы с пространственным разделением, использующие многоканальные приемники, в средней ИК – области, в отличие от видимой, практически не применяются. Примером многоканального прибора для видимой области служит спектрограф, регистрирующий спектр излучения на фотопластинку. Многоканальные спектрометры - это такие приборы, в которых приемник одновременно получает много сигналов, соответствующих различным участкам спектра. Эти сигналы дешифруются таким образом, что дают информацию о каждом отдельном спектральном элементе.

В ходе классического спектроскопического эксперимента входящее в призменный или решеточный монохроматор полихроматическое излучение (белый свет) разделяется на бесконечное число монохроматических пучков. Спектр получается путем пространственного разделения выходящих из призмы пучков с различными длинами волн. Дифракционная решетка работает подобным же образом, за исключением того, что число пучков равно числу штрихов решетки и для каждой длины волны на выходе получается больше одного максимума. Различные порядки спектра, которые перекрываются, необходимо разделять. Разрешение, достигаемое в спектрометре, определяется шириной щели, задающей полосу длин волн, которая попадает на фотоприемник и порядком спектра.[2]

Область средней ИК, в находится в интервале длин волн от 400 до 4000 см-1, в которых происходит возбуждение колебательных движений атомов в молекуле и вращательного движения молекулы в целом. Полученные спектры дают информацию о строении молекул исследуемого вещества. Поскольку атомы способны колебаться абсолютно по-разному, в ИК-спектре обычно имеется большое число полос поглощения.

После поглощения ИК-излучения молекулярные осцилляторы будут колебаться сильнее на этих же частотах, то есть увеличиться амплитуда колебаний. Таким образом, при прохождении ИК-излучения через пробу, некоторые частоты поглощаются, а остальные пропускаются без поглощения.

Сравнивая спектр образца со спектрами из библиотеки — либо составленной самим пользователем, либо приобретенной в готовом виде, — можно идентифицировать вещество, причем в настоящее время спектральный поиск ведется с помощью компьютерных программ.

Условием возбуждения молекулы в результате поглощения электромагнитного излучения является дипольный момент, который изменяется вместе с колебательным состоянием молекулы.

Но некоторые молекулы не обладают постоянным дипольным моментом из-за их симметричности, поэтому ИК-спектры таких веществ как: инертные газы, простые вещества (N2, O2,Cl2),а также металлы и соли без ковалентных связей получить нельзя.

Экспериментальная часть

Основной задачей экспериментальной части настоящей работы являлся качественный и количественный анализ чистых веществ, входящих в состав нефтепродуктов (в качестве такого вещества был выбран изооктан), модельных смесей (изооктана и бензола; изооктана, бензола и гексана; ГСО), нефтепродуктов (на примере бензина).

Пробоподготовка

Оборудование, посуда и реактивы: ИК-Фурье спектрометр IR-Iraffinity-1 (Шимадзу. Япония), вытяжной шкаф, дозатор на 1 мл, бюксы с крышкой, экстрактор, делительная воронка, стеклянный фильтр, конические колбы на 25 и 50 мл, CCl4 (тетрахлорид углерода) 99.98 % для спектроскопии, С8H18(изооктан) - ЧДА, C6H6(бензол) - ХЧ, ГСО 7248-96, С6H14(гексан) - ХЧ.

Раствор изооктана в тетрахлориде углерода заданной концентрации 5 - 40 масс % готовился из 100%-го С8H18, работу проводили в перчатках в вытяжном шкафу. ИК-спектры регистрировали сразу после приготовления растворов. Все растворы изооктана были приготовлены дважды, поэтому были получены две серии опытов на ИК-спектрометре.

Приготовление смесей:

Приготовленная модельная смесь, состоящая из 25% бензола, 37,5% изооктана и 37,5% гексана. Рассчитанные объемы веществ, необходимые для приготовления смеси дозатором вносятся в коническую колбу на 50 см3. Затем туда до метки наливается тетрахлорид углерода и перемешивается.

Описание результатов Изооктан
  1. Тетрахлорид углерода

В качестве растворителя органических веществ был выбран тетрахлорид углерода (см. рис.1), поскольку его ИК-спектр (зависимость пропускания в % от волнового числа в см-1) не мешает определению других органических веществ, т.к. имеет характерные пики при k = 1550, 1250, 1000 и 750 см-1 (k – волновое число).

Рис. 1. ИК-спектр 100% тетрахлорида углерода

  1. Изооктан.

На рис.2 представлен объединенный график спектров 5, 10, 20, 30, 40-% изооктана

Рис. 2. Общий спектр растворов изооктана.

Функциональные группы в молекуле имеют свой диапазон частот, в которых происходят различные колебания. В деформационных колебаниях происходит изменение угла между колеблющимися атомами. В валентных колебаниях угол не меняется, но атомы могут двигаться по осям связи как в одну сторону (симметричные колебания), так и в разные стороны (антисимметричные колебания)[3].

Характерные пики для изооктанf, как видно на рис. 2, определены на нескольких диапазонах частот: диапазон 2790-3037 см-1 соответствует валентным колебаниям группы C-H[4]. Диапазон частот 1416-1506 и 1329-1415 см-1 соответствуют антисимметричным колебаниям группы С-Н3 и деформационным колебаниям групп С-Н3 и С-Н2[4]. На рис. 3 представлен калибровочный график характеристического пика (2790-3037 см-1).

Рис. 3. Калибровочный график характеристического пика (2790-3037 см-1) изооктана

Модельные смеси

В ходе работы были приготовлены и проанализированы 2 модельные смеси: изооктана и бензола; изооктана, бензола и гексана.

  1. Смесь бензола и изооктана. На рис. 4 представлен полученные ИК- спектры: (а) приведены отдельные спектры чистых изооктана и бензола, (б) спектр бинарной смеси изооктана и бензола.

а) отдельные ИК-спектры чистых изооктана и бензола: синий - изооктан, зеленый - бензол.

б) ИК-спектр бинарной смеси бензола и изооктана

Рис. 4. ИК-спектры бензола и изооктана

Доказательством достоверности соответствия полученных пиков смеси (рис. 4б) является рис. 4а, где представлены наложенные друг на друга индивидуальные спектры бензола и изооктана, характеристические пики возникают на одних и тех же длинах волн.

  1. Смесь, состоящая из 25% бензола, 37,5% изооктана и 37,5% гексана и измерены спектры растворов: 1,3,5,7,10,15,20,100%, на рис. 5 приведен общий спектр для всех изученных концентраций данной модельной смеси.

Рис. 5. Общий ИК-спектр модельной смеси (25% бензола, 37,5% изооктана и 37,5% гексана)

На рис.6 представлен результат калибровки приготовленной модельной смеси в диапазоне длин волн 3001-2824 см-1.

Рис. 6 Калибровочный график характеристического пика модельной смеси

(25% бензола, 37,5% изооктана и 37,5% гексана)

Бензин
  1. Были приготовлены растворы бензина «АИ-95 Лукойл» с концентрациями: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100% в CCl4 и измерены их спектры. На рис. 7 представлен общий спектр:

Рис. 7. Общий ИК-спектр растворов бензина АИ-95

Результаты калибровки в диапазоне длин волн 3118 - 2774 см-1 приведены на рис.8. Можно сравнить полученные характеристические пики раствора бензина (рис. 7) со спектром модельной смеси (рис. 4). Пики колебаний молекул изооктана и бензола в бензине совпадают с пиками в модельной смеси. Это подтверждает наличие этих веществ в бензине марки «АИ-95».

Рис. 8. Калибровочная кривая растворов бензина АИ-95

Выводы
  • Изучены аналитические методы определения нефтепродуктов

  • Изучена сущность метода ИК-спектроскопии.

  • Освоена техника эксперимента на ИК-Фурье спектрометре.

  • Идентифицирован изооктан, входящий в состав нефтепродуктов.

  • Построены калибровочные графики для количественного определения изооктана.

  • Идентифицированы модельные смеси веществ, входящих в состав нефтепродуктов.

  • Проведен анализ нефтепродуктов на примере бензина АИ-95.

Список литературы
  1. Крылов А.С., Втюрин А. Н., Герасимова Ю. В. Обработка данных инфракрасной Фурье-спектроскопии. 2005 г., 48 с.

  2. Б.Н. Тарасевич. Основы ИК спектроскопии с преобразованием Фурье. Подготовка проб в ИК спектроскопии. Москва 2012, 22 с.

  3. Ю. Бёккер. Спектроскопия. Москва 2009. перевод с нем. Л. Н. Казанцева, 528 с.

  4. Тарасевич. ИК спектры основных классов органических соединений. 2012

  5. База спектров http://webbook.nist.gov/chemistry/.

Изооктан: http://webbook.nist.gov/cgi/cbook.cgi?ID=C540841&Units=SI&Type=IR-SPEC&Index=3#IR-SPEC

Тетрахлорид углерода: http://webbook.nist.gov/cgi/cbook.cgi?ID=C56235&Units=SI&Type=IR-SPEC&Index=4#IR-SPEC

Просмотров работы: 3221