РОЛЬ СЕЛЕКЦИИ В ПОВЫШЕНИИ ПРОДУКТИВНОСТИ ЗЕРНОВЫХ КУЛЬТУР. - Студенческий научный форум

VIII Международная студенческая научная конференция Студенческий научный форум - 2016

РОЛЬ СЕЛЕКЦИИ В ПОВЫШЕНИИ ПРОДУКТИВНОСТИ ЗЕРНОВЫХ КУЛЬТУР.

Умарова Д.Е. 1
1Саратовский государственный аграрный университет имени Н.И.Вавилова
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
С ростом человеческой популяции (по прогнозу она в 2025 г. составит 8 млрд. человек) основной проблемой общества станет обеспечение населения Земли продовольствием (Сакмак, 2003). В соответствии с расчетами количество производимых продуктов питания в следующие два десятилетия должно удвоится. В связи с тем, что площадь пахотно-пригодных земель ограничена, приоритетными направлениями исследований остаются вопросы повышения продуктивности культур. Особую актуальность исследованиям придает существующая в настоящее время тенденция к снижению урожайности сельскохозяйственных культур в мире. Наиболее мощным рычагом увеличения урожаев, является улучшение питания растений. Повышение продуктивности сельскохозяйственных культур за последние сорок лет было достигнуто за счет увеличения использования азотных удобрений в 6.9 раза, фосфорных - в 3.5 и только в 1.1 раза за счет роста посевных площадей. Как показывают расчеты, использование удобрений к 2030 г. должно увеличиться до 200 млн. т, тогда как в 1993 г. оно составляло 183 млн. т. Чрезмерное применение удобрений в свою очередь приведет к возрастанию нагрузки на окружающую среду. Для предотвращения экологической катастрофы необходимо решение ряда экономических и биологических проблем, таких как повышение эффективности использования удобрений, увеличение фиксации азота бобовыми культурами, применение органических удобрений. Усиливается роль микроэлементов, которые, увеличивая устойчивость растений к стрессовым ситуациям, повышают их продуктивность и качество продукции. Возрастает роль молекулярной биологии в отборе генотипов растений с более эффективным использованием элементов питания, более устойчивых к неблагоприятным почвенным условиям (кислотность, засоление). Уже в настоящее время получены клоны растений, которые способны произрастать в условиях дефицита отдельных элементов, преодолевать токсичность алюминия и тяжелых металлов. Важным в перспективе является получение генотипов зерновых культур, имеющих возможности к фиксации азота из воздуха.

Динамика роста урожайности в мире

В 50--60-е годы прошлого столетия достижения биологической и сельскохозяйственной науки обеспечили в экономически развитых странах увеличение урожайности зерновых культур в 2--3 раза и более. При этом в среднем, треть прироста урожайности была получена за счет внедрения короткостебельных сортов, повышения устойчивости растений к болезням и вредителям, отзывчивости на факторы интенсификации земледелия (Касаева, Ковалев, 1989).

В развивающихся странах (Индия, Мексика) быстрый рост в 60--70-х годах урожайности зерновых связывают с сортосменой. В экономически развитых странах, где темпы роста урожайности в этот период были не менее значительными, а абсолютные приросты -- намного выше (табл. 1), ведущая роль в увеличении производства зерна отводилась интенсификации земледелия, которая требовала создания более отзывчивых на данные факторы сортов. Так, в ФРГ, в период с 1952 по 1975 год ежегодный прирост урожайности озимой пшеницы составил 92 кг/га, в том числе 62% обусловило совершенствование технологии и 38% -- внедрение новых сортов: яровой пшеницы -- соответственно 82 кг/га, 68 и 32%; озимого ячменя -- 93 кг/га, 81 и 19%; ярового ячменя -- 59 кг/га, 49 и 51%; овса -- 58 кг/га, 59 и 41%; кукурузы на зерно -- 196 кг/га, 66 и 34%; озимой ржи -- 62 кг/га. 13 и 87% (Шевелуха, 1998).

Связь фотосинтеза с продуктивностью растенийФотосинтез был открыт 230 лет назад, но очень долго это направление в науке было далеким от практических задач агрономии. Только в начале ХХ века были сделаны первые попытки, объяснить формирование фитомассы с помощью каких-то отдельных показателей (интенсивность и чистая продуктивность фотосинтеза, площадь листьев). Однако это направление оказалось безуспешным. Академик РАН А.Т.Мокроносов (1983) выделил три этапа последовательного приближения исследователей фотосинтеза к концепции продуктивности (в том числе хозяйственного урожая).

Первый шаг в этом направлении был сделан Л.А.Ивановым в 1941году. Если в более ранних работах исследователи пытались найти прямую зависимость между урожаем и каким-то отдельным показателем, то он предложил балансовое уравнение, в котором выразил зависимость между общей фитомассой и интенсивностью фотосинтеза, размерами ассимиляционного аппарата, временем его работы с одной стороны и дыханием с другой.

На современном этапе появилась настоятельная необходимость и реальная возможность более органично связать теорию фотосинтетической продуктивности с нефотосинтетическими процессами. Поэтому на повестку дня поставлена разработка общей теории продукционного процесса на основе теории фотосинтетической продуктивности (Мокроносов, 1983; Ничипорович, 1988 и др.). При этом главное внимание должно быть уделено не экстенсивным факторам (увеличение размеров ассимилирующих органов и фотосинтетических потенциалов), а в первую очередь показателям, характеризующим производительность продукционного процесса.

В разрабатываемой теории продукционного процесса значительно больше внимания следует также уделить донорно-акцепторным отношениям, которые характеризуют сам процесс формирования подземной и надземной фитомассы, в том числе хозяйственного урожая. Причем эти закономерности целесообразно учитывать не только количественными показателями сухого вещества, но и энергетическими (Коломейченко, 2001). Установлено, что более полная энергетическая характеристика любых сельскохозяйственных культур, севооборотов и природных фитоценозов может быть дана с помощью следующих трех показателей:

а) коэффициент использования ФАР во времени (Кв.), показывающий ее долю от поступившей за потенциально возможный вегетационный период со среднесуточной температурой выше +30 СЃ‹;

б) коэффициент использования ФАР в пространстве (Кп), т.е. общепринятый сейчас КПД ФАР;

в) коэффициент биоэнергетической эффективности (Кб), характеризующий отношение энергии хозяйственного урожая к антропогенной, которая была затрачена на его выращивание и уборку.

Методы биотехнологии в селекции на продуктивность

За последние 20 лет биотехнология, используя рекомбинантные (полученные за счет объединения вместе не встречающихся в природе фрагментов) ДНК, превратилась в неоценимый новый научный метод исследования и производства продукции сельского хозяйства. Рекомбинантная ДНК позволяет селекционерам отбирать и вводить в растения гены «поодиночке», что не только резко сокращает время исследований по сравнению с традиционной селекцией, избавляя от необходимости тратить его на «ненужные» гены, но и дает возможность получать «полезные» гены из самых разных видов растений. Эта генетическая трансформация сулит огромную пользу для производителей сельскохозяйственной продукции, в частности, повышая устойчивость растений к насекомым-вредителям, болезням и гербицидам. Дополнительные выгоды связаны с выведением сортов, более устойчивых к недостатку или избытку влаги в почве, а также к жаре или холоду -- основным характеристикам современных прогнозов грядущих климатических катаклизмов. Наконец, немалую выгоду может получить от биотехнологии и непосредственно потребитель, поскольку новые сорта обладают более высокими питательными свойствами и другими характеристиками, сказывающимися на здоровье (Борлауг, 2001).

Новые сорта трансгенных растений достаточно быстро завоевывают популярность в среде производителей. Это -- пример наиболее быстрого распространения (как результатов, так и методов) во всей многовековой истории сельского хозяйства. В период с 1996 по 1999 год площади, засеянные трансгенными сортами основных продовольственных культур, увеличились почти в 25 раз (с 1,7 до 40 млн га).

Зерновые и злаковые кормовые культуры являются еще трудным объектом для генной инженерии, прежде всего, в связи с отсутствием надежных векторных систем для введения генов в геном их клеток. Поэтому одновременно ведется разработка методов прямого переноса генов в клетки растений для получения устойчивых форм к стрессовым факторам, болезням и вредителям (США, ФРГ, Испания, Франция и др.).

Методы моделирования в селекции на продуктивность

Необходимость учета влияния на продуктивность растений множества сильно варьирующих факторов в динамике (биологических особенностей растений, почвенных, климатических, агротехнических, экономических и других факторов) обуславливает развитие системного подхода к управлению формированием урожая на основе моделирования. Точный расчет с применением математических моделей и вычислительной техники обеспечивает наиболее эффективное использование ресурсов с учетом роста плодородия полей и охраны окружающей среды. Это повышает объективность, точность решения задач оптимизации по сравнению с традиционными методами принятия решений на основе практического опыта и интуиции.

В зарубежных странах с развитым сельским хозяйством моделирование находит все большее значение для прогнозирования урожайности и управления формированием урожая сельскохозяйственных культур в целях достижения максимальной эффективности в земледелии. Потребность в разработке и совершенствовании математических моделей обусловлена непрерывным усложнением задач, возникающих во всех отраслях сельского хозяйства, имеющих системный характер, ужесточение требований к корректности и обоснованности принятия решений. Все это ведет к повышению удельного веса математических моделей в ряду средств современной информационной технологии.

В селекционных программах с помощью моделирования ведутся исследования для выявления оптимального сочетания признаков при проектировании новых сортов с заданными параметрами. По-видимому, в будущем значительная часть работы в этих программах будет состоять из разработки целесообразных моделей и сбора материала для математического моделирования.

Селекция и интенсификация технологий в ряде экономически развитых стран определили современный высокий уровень урожайности зерновых (44--63 ц/га) и других культур. Есть основание считать, что дальнейшее нарастание производства сельскохозяйственной продукции в мире будет осуществляться на основе тех же факторов, прежде всего, за счет повышения уровня интенсификации земледелия в развивающихся странах. Но поскольку интенсификация земледелия на определенном этапе сопряжена с экономическими и экологическими издержками, важнейшее значение приобретают биологические и биофизические исследования, направленные на селекционное улучшение растений, стабильность производства сельскохозяйственной продукции и повышение ее качества.

Роль селекции в повышении фотосинтетической продуктивности растений современных сортов проявилась, главным образом, в изменении морфогенеза, т.е. генетическом улучшении структуры растений. Для значительного увеличения зерновой продуктивности новых сортов без изменения продолжительности вегетационного периода требуется повышение активности фотосинтетического аппарата на основе генетической перестройки его структуры и функций, детального изучения всех глубинных сторон процесса фотосинтеза, начиная с его первичных реакций. Рост продуктивности новых сортов кормовых культур, у которых общая надземная биомасса является хозяйственной частью урожая, также находится в прямой зависимости от активности фотосинтеза. Но при современном уровне знаний физиологии и генетики фотосинтеза и дыхания задача повышения активности фотосинтетического аппарата селекционными методами пока еще не имеет четкого решения.

Просмотров работы: 1635