Слух имеет огромное значение для обучения речи, развития интеллекта и психики, особенно в детском возрасте. Слух играет ключевую роль в общении между людьми.
Орган слуха образован тремя отделами: наружным - ушная раковина и наружный слуховой проход, средним - три последовательно соединенные слуховые косточки: молоточек, наковальня и стремечко, и внутренним ухом - костный и лежащий в нем перепончатый лабирант (улитка). Среднее ухо сообщается с носоглоткой через слуховвую (евстахиеву) трубку.
Ультразвуки и инфразвуки имеют очень важную роль и в живом мире. Так, например, рыбы и другие морские животные чутко улавливают инфразвуковые волны, создаваемые штормовыми волнениями. Таким образом, они заранее чувствуют приближение шторма или циклона, и уплывают в более безопасное место. Инфразвук - это составляющая звуков леса, моря, атмосферы.
Ультразвуки могут издавать и воспринимать такие животные, как собаки, кошки, дельфины, муравьи, летучие мыши и др. Летучие мыши во время полёта издают короткие звуки высокого тона. В своём полете, они руководствуются отражениями этих звуков от предметов, встречающихся на пути; они могут даже ловить насекомых, руководствуясь только эхом от своей мелкой добычи. Кошки и собаки могут слышать очень высокие свистящие звуки (ультразвуки).
Проведённые наблюдения показали, что муравьи так же издают ультразвуковые сигналы с разными частотами в разных ситуациях. Все записанные эти муравьиные звуковые сигналы можно разделить на три группы: "сигнал бедствия", "сигнал агрессии" (во время борьбы) и "пищевые сигналы". Эти сигналы представляют собой кратковременные импульсы, длительностью от 10 до 100 микросекунд. Муравьи издают звуки в сравнительно широком диапазоне частот - от 0,3 до 5 килогерц.
Также и жизнь человека наполнена многими явлениями, о влиянии которых мы и не задумываемся. Тем не менее, они существуют и влияют на нас. Речь пойдет об инфразвуке и ультразвуке.
Инфразвук
Инфразвук (от лат. infra – ниже, под) – упругие волны, аналогичные звуковым, но имеющие частоты ниже слышимых человеком частот. Обычно за верхнюю границу инфразвукового (ИЗ) диапазона принимают 16–25 Гц, нижняя граница не определена. Практический интерес могут представлять колебания частотой от десятых и даже сотых долей герца, т.е. периодами в десяток секунд. Инфразвук содержится в шуме атмосферы, леса, моря. Источниками ИЗ-колебаний являются грозовые разряды (гром), взрывы, орудийные выстрелы. В земной коре наблюдаются ИЗ-колебания, возбуждаемые самыми разнообразными источниками, в том числе землетрясениями, взрывами, обвалами и даже транспортными средствами.
Поскольку инфразвук слабо поглощается в различных средах, он может распространяться на очень большие расстояния в воздухе, воде и земной коре. Это находит практическое применение при определении местоположения эпицентра землетрясения, сильного взрыва или стреляющего орудия. Распространение инфразвука на большие расстояния в море даёт возможность предсказывать стихийные бедствия, например, цунами. Взрывы, порождающие большой спектр ИЗ-частот, применяются для исследования верхних слоёв атмосферы, свойств водной среды.
Влияние инфразвука на организм человека. В конце 60-х гг. французский исследователь Гавро обнаружил, что инфразвуки определённых частот могут вызывать у человека тревожность и беспокойство, головную боль, снижать внимание и работоспособность, даже нарушать функцию вестибулярного аппарата и вызывать кровотечение из носа и ушей. Инфразвук частотой 7 Гц смертелен. Свойство инфразвука вызывать страх используется полицией в ряде стран мира: для разгона толпы включаются мощные генераторы, частоты которых отличаются на 5–9 Гц. Биения, возникающие вследствие различия частот этих генераторов, имеют
ИЗ-частоту и вызывают у многих людей неосознанное чувство страха, желание поскорее уйти из этого места.
Профессор Гавро познакомился с инфразвуками почти случайно. В одном из помещений лаборатории, где работали его сотрудники, с некоторых пор стало невозможно находиться. Достаточно было пробыть здесь два часа, чтобы почувствовать себя совсем больным: кружилась голова, наваливалась усталость, мысли путались, а то и вовсе не хотелось думать о чём-либо.
Прошёл не один день, прежде чем исследователи сообразили, где следует искать неизвестного врага. Им оказались инфразвуки большой мощности, создаваемые вентиляционной системой нового завода, построенного близ лаборатории. Частота этих волн равнялась 7 Гц. Профессор Гавро высказал предположение, что биологическое действие инфразвука проявляется, если частота волны совпадает с так называемым альфа-ритмом головного мозга.
Механизм восприятия инфразвука и его физиологического действия на человека пока полностью не установлен. Возможно, что оно связано с возбуждением резонансных колебаний в организме. Так, собственная частота нашего вестибулярного аппарата близка к 6 Гц, и многим знакомы неприятные ощущения при длительной езде в автобусе, поезде, при плавании на корабле или качании на качелях. Говорят: «Меня укачало».
При воздействии инфразвука могут отличаться друг от друга картины, создаваемые левым и правым глазом, начинает «ломаться» горизонт, возникают проблемы с ориентацией в пространстве, приходят необъяснимые тревога и страх. Подобные же ощущения вызывают и пульсации света частотой 4–8 Гц. Ещё египетские жрецы, чтобы добиться признания у пленника, связывали его и с помощью зеркала пускали в глаза пульсирующий солнечный луч. Через некоторое время у пленника появлялись судороги, начинала идти пена изо рта, психика подавлялась, и он начинал отвечать на вопросы.
Сходные воздействия инфразвука и мигающего света, не считая даже повышенную громкость звука, испытывают посетители дискотек. Вполне возможно, что они не проходят бесследно, и в организме могут происходить какие-либо нежелательные и необратимые изменения.
При землетрясениях и подвижках земной коры генерируются волны трёх типов: P, S, и L. P-волны (от англ. primary – первичный) – продольные волны сжатия-растяжения, распространяются на огромные расстояния со скоростью звука в данной среде. S-волны (от англ. secondary – вторичный) – поперечные, они могут распространяться только в скальных породах. L-волны (волны Лява, по имени открывшего их учёного A.Love) подобны морским и распространяются вдоль границ разных сред с малой скоростью, зависящей от частоты. Волна инфразвука, дойдя до поверхности Земли от центра землетрясения, превращается в L-волну, которая и вызывает наблюдаемые многочисленные разрушения. Такие же, но более слабые, волны возникают при подземных ядерных взрывах.
Инфразвук – причина катастроф. Дело в том, что в Мировом океане громадные запасы метангидрата – метанового льда. Это конгломерат воды и газа, состоящий из кластеров из 32 молекул воды и 8 молекул метана. Метангидраты образуются там, где на морском дне через трещины в земной коре выделяется природный газ. Инфразвуковая волна, обладая огромной энергией, разрушает метановый лёд, и газ метан выделяется в воду. Кратеры, выделяющие метан, были обнаружены научно-исследовательским кораблём «Полярная звезда» (ФРГ) в море Лаптевых и у берегов Пакистана в 1987 г. Образующаяся при выделении метана газоводяная смесь имеет очень малую плотность, и корабль, оказавшийся в этой зоне, может внезапно утонуть. Так же и самолёт, пролетающий над таким местом, может неожиданно глубоко «провалиться» в воздушную яму и удариться о поверхность воды. Считается, что многие необъяснённые катастрофы кораблей и самолётов связаны именно с непредсказуемым выделением метана из морских глубин.
Инфразвуковые колебания в атмосфере Земли являются результатом действия многочисленных причин: галактических космических лучей, гравитационных воздействий Луны и Солнца, падений метеоритов, электромагнитных излучений и корпускулярных потоков от Солнца, а также геосферных процессов. Взаимодействие электромагнитного излучения с оптическими неоднородностями атмосферы может приводить к генерации акустических колебаний в широком диапазоне частот. Следует ожидать поэтому, что в спектре ИЗ-колебаний атмосферы должна проявляться ритмика солнечной активности. Это может обуславливать широко известную связь солнечной активности с биосферными процессами.
ИЗ-колебания в атмосфере связаны также с сейсмической активностью, причём они могут быть и внешним воздействием на подготовительные процессы, и их результатом. Связь интенсивности сейсмических процессов с солнечной активностью была обнаружена при анализе глобальной сейсмичности и
11-летних солнечных циклов. Сейчас считается, что эта связь осуществляется через циклоническую активность в атмосфере.
В ЛЦ ИКИ в результате анализа спектров инфразвука, полученных в период 1997–2000 гг., обнаружены годовые, сезонные, 27-суточные и суточные периоды колебаний. Подтверждена гипотеза о возрастании энергии инфразвука при уменьшении солнечной активности. Максимальная годовая энергия инфразвука наблюдалась в 1997 г., когда солнечная активность была в минимуме, аналогичное наблюдалось и при её кратковременных (5–10 суток) изменениях. Исследования ИЗ-спектров до и после крупных землетрясений показало их характерные изменения перед крупными землетрясениями. В результате экспериментов по наблюдению электромагнитных откликов на акустические возмущения в атмосфере, создаваемые с помощью мобильного акустического излучателя, доказана связь инфразвука с геомагнитными вариациями.
Таким образом, Солнце, межпланетная среда, атмосфера и литосфера представляют собой единую систему, и существенную роль в процессах их взаимодействия играют ИЗ-волны.
Влияние инфразвука на организм людей
Исследования биологического действия инфразвука на организм показали, что при уровне от 110 до 150 дБ и более он может вызывать у людей неприятные субъективные ощущения и многочисленные реактивные изменения, к числу которых следует отнести изменения в центральной нервной, сердечно-сосудистой и дыхательной системах, вестибулярном анализаторе. Имеются данные о том, что инфразвук вызывает снижение слуха преимущественно на низких и средних частотах. Выраженность этих изменений зависит от уровня интенсивности инфразвука и длительности действия фактора. В соответствии с Гигиеническими нормами инфразвука на рабочих местах (№ 2274-80) по характеру спектра инфразвук подразделяется на широкополосный и гармонический. Гармонический характер спектра устанавливают в октавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ. По временным характеристикам инфразвук подразделяется на постоянный и непостоянный. Нормируемыми характеристиками инфразвука на рабочих местах являются уровни звукового давления в децибелах в октавных полосах частот со среднегеометрическими частотами 2, 4, 8, 16 Гц. Допустимыми уровнями звукового давления являются 105 дБ в октавных полосах 2, 4, 8, 16 Гц и 102 дБ в октавной полосе 31,5 Гц. При этом общий уровень звукового давления не должен превышать 110 дБ Лин. Для непостоянного инфразвука нормируемой характеристикой является общий уровень звукового давления.
Инфразвук отнюдь не является недавно открытым явлением. В действительности органистам он известен уже более 250 лет. Во многих соборах и церквях есть столь длинные органные трубы, что они издают звук частотой менее 20 Гц, не воспринимаемый человеческим ухом. Но, как выяснили британские исследователи, такой инфразвук может вселить в аудиторию разнообразные и не слишком приятные чувства — тоску, ощущение холода, беспокойство, дрожь в позвоночнике. Люди, подвергшиеся воздействию инфразвука, испытывают примерно те же ощущения, что и при посещении мест, где происходили встречи с призраками.
Сотрудник Национальной лаборатории физики в Англии доктор Ричард Лорд и профессор психологии Ричард Вайсман из Хертфордширского университета провели довольно странный эксперимент над аудиторией из 750 человек. С помощью семиметровой трубы им удалось примешать к звучанию обычных акустических инструментов на концерте классической музыки сверхнизкие частоты. После концерта, слушателей попросили описать их впечатления. "Подопытные" сообщили, что почувствовали внезапный упадок настроения, печаль, у некоторых по коже побежали мурашки, у кого-то возникло тяжелое чувство страха. Самовнушением это можно было бы объяснить лишь отчасти. Из четырех сыгранных на концерте произведений, инфразвук присутствовал только в двух, при этом слушателям не сообщали, в каких именно. "Некоторые ученые полагают, что инфразвуковые частоты могут присутствовать в местах, которые, по легендам, посещают призраки, и именно инфразвук вызывает странные впечатления, обычно ассоциирующиеся с привидениями, - наше исследование подтверждает эти идеи", - заявил Вайсман.
26 сентября 2002 года в Ливерпуле посетители концерта органной музыки стали участниками научного эксперимента: британские исследователи хотели проверить, как слушатели будут реагировать на инфразвук, то есть звуковые вибрации, недоступные для восприятия человеческим ухом. Учёные ожидали, что во время 50-минутного концерта российской органистки Евгении Чудинович, который прошел в центральном соборе города (Metropolitan Cathedral), инфразвук вызовет у аудитории сугубо положительные эмоции, к примеру, у людей поднимется настроение. С другой стороны, от "беззвучной музыки" у слушателей могут возникнуть и рвотные позывы.
УЛЬТРАЗВУК
Ультразвук – упругие волны высокой (более 20 кГц) частоты. Хотя о существовании ультразвука учёным было известно давно, практическое использование его в науке, технике и промышленности началось сравнительно недавно. Сейчас ультразвук широко применяется в различных физических и технологических методах.
Генерация ультразвуковых (УЗ) волн. Ультразвук можно получить от механических, электромагнитных и тепловых источников. В газовой среде УЗ-волны обычно возбуждаются механическими излучателями разного рода – сиренами прерывистого действия. Мощность ультразвука – до нескольких киловатт на частотах до 40 кГц. УЗ-волны в жидкостях и твёрдых телах обычно возбуждают электроакустическими, магнитострикционными и пьезоэлектрическими преобразователями.
Сирена – один из видов механических УЗ-излучателей. Она обладает относительно большой мощностью и применяется в милицейских и пожарных машинах. Все ротационные сирены имеют камеру, закрытую сверху диском (статором) с большим количеством отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске – роторе. При вращении ротора положение отверстий в нём периодически совпадает с положением отверстий на статоре. В камеру непрерывно подаётся сжатый воздух, который вырывается в те короткие мгновения, когда отверстия на роторе и статоре совпадают. Основная задача при изготовлении сирен – это, во-первых, увеличить число отверстий в роторе и, во-вторых, увеличить скорость его вращения. Однако совместить эти требования очень трудно.
Свисток Гальтона. Первый ультразвуковой свисток сделал в 1883 г. англичанин Ф.Гальтон. При пропускании под высоким давлением воздуха через маленькую цилиндрическую резонансную полость в результате удара цилиндрического поршня о губу (металлическую пластинку) в зазоре генерируется ультразвук частотой около 170 кГц (определяется размерами кольцевого сопла и губы). Мощность свистка Гальтона невелика, его в основном применяют для подачи команд при дрессировке собак.
Применение ультразвука в медицине
Гигиена. То, что ультразвук активно воздействует на биологические объекты (например, убивает бактерии), известно уже более 70 лет, но до сих пор среди медиков нет единого мнения о конкретном механизме его воздействия на больные органы. Одна из гипотез: высокочастотные УЗ-колебания вызывают внутренний разогрев тканей, сопровождаемый микромассажем.
Санитария. Широко применяются в больницах и клиниках УЗ-стерилизаторы хирургических инструментов.
Диагностика. Электронная аппаратура со сканированием УЗ-лучом служит для обнаружения опухолей мозга и постановки диагноза.
Акушерство – область медицины, где эхоимпульсные УЗ-методы наиболее прочно укоренились, как, например, ультразвуковое исследование (УЗИ) движения плода, которое недавно прочно вошло в практику. Сейчас происходит накопление информации по движению конечностей плода, псевдодыханию, по динамике сердца и сосудов. Пока исследуются физиология и развитие плода, а до обнаружения аномалий пока ещё далеко.
Офтальмология. Ультразвук особенно удобен для точного определения размеров глаза, а также для исследования патологий и аномалий его структур в случае непрозрачности и, следовательно, недоступности для обычного оптического исследования. Область позади глаза – орбита – доступна обследованию через глаз, поэтому ультразвук вместе с компьютерной томографией стал одним из основных методов исследования патологий этой области.
Кардиология. Ультразвуковые методы широко применяются при обследовании сердца и прилегающих магистральных сосудов. Это связано с возможностью быстрого получения пространственной информации, а также возможностью её объединения с томографической визуализацией.
Терапия и хирургия. Давно известно, что УЗ-излучение можно сделать узконаправленным. Французский физик Поль Ланжевен впервые заметил его повреждающее действие на живые организмы. Результаты его наблюдений, а также сведения о том, что УЗ-волны могут проникать сквозь мягкие ткани человеческого организма, привели к тому, что с начала 1930-х гг. возник большой интерес к проблеме применения ультразвука для терапии различных заболеваний. Особенно широко ультразвук стал применяться в физиотерапии. Тем не менее лишь недавно стал намечаться научный подход к анализу явлений, возникающих при взаимодействии УЗ-излучения с биологической средой. Терапевтический ультразвук можно разделить на ультразвук низких и высоких интенсивностей – соответственно неповреждающий нагрев (или какие-либо нетепловые эффекты) и стимуляция и ускорение нормальных физиологических реакций при лечении повреждений (физиотерапия и некоторые виды терапии рака). При более высоких интенсивностях основная цель – вызвать управляемое избирательное разрушение в тканях (хирургия). Электронная аппаратура используется в нейрохирургии для инактивации отдельных участков головного мозга мощным сфокусированным высокочастотным (порядка 1000 кГц) пучком.
Оценка безопасности применения ультразвука в медицине. Пока невозможно выделить один или даже несколько физических параметров, которые служили бы в качестве адекватных количественных характеристик, позволяющих предсказать конечный биологический эффект. И всё же полезно выдвинуть некоторые критерии для правильного применения ультразвука:
1. Оператор должен использовать минимальные интенсивности и экспозиции, позволяющие получить у пациента желаемый клинический эффект.
2. Обслуживающий персонал не должен облучаться без необходимости.
3. Все процедуры должны выполняться хорошо обученным персоналом или под его руководством.
Гидролокация. Давление в УЗ-волне превосходит давление в волне обычного звука в тысячи раз и легко обнаруживается с помощью микрофонов в воздухе и гидрофонов в воде. Это даёт возможность применения ультразвука для обнаружения косяков рыбы или других подводных объектов. Одна из первых практических УЗ-систем обнаружения подводных лодок появилась в конце Первой мировой войны.
Ультразвуковой расходомер. Принцип действия такого прибора основан на эффекте Доплера. Импульсы ультразвука направляются попеременно по потоку и против него. При этом скорость прохождения сигнала то складывается со скоростью потока, то вычитается из неё. Возникающая разность фаз импульсов в двух ветвях измерительной схемы регистрируется электронным оборудованием, в итоге вычисляется скорость потока, а по ней – и массовая скорость (расход). Этот измеритель может применяться как в замкнутом контуре (например, для исследований кровотока в аорте или охлаждающей жидкости в атомном реакторе), так и в открытом (например, реки).
Влияние ультразвука на организм человека
Ультразвук обладает главным образом локальным действием на организм, поскольку передается при непосредственном контакте с ультразвуковым инструментом, обрабатываемыми деталями или средами, где возбуждаются ультразвуковые колебания. Ультразвуковые колебания, генерируемые ультразвуком низкочастотным промышленным оборудованием, оказывают неблагоприятное влияние на организм человека. Длительное систематическое воздействие ультразвука, распространяющегося воздушным путем, вызывает изменения нервной, сердечно-сосудистой и эндокринной систем, слухового и вестибулярного анализаторов. Наиболее характерным является наличие вегетососудистой дистонии и астенического синдрома. Степень выраженности изменений зависит от интенсивности и длительности воздействия ультразвука и усиливается при наличии в спектре высокочастотного шума, при этом присоединяется выраженное снижение слуха. В случае продолжения контакта с ультразвуком указанные расстройства приобретают более стойкий характер. При действии локального ультразвука возникают явления вегетативного полиневрита рук (реже ног) разной степени выраженности, вплоть до развития пареза кистей и предплечий, вегетативно-сосудистой дисфункции. Характер изменений, возникающих в организме под воздействием ультразвука, зависит от дозы воздействия. Малые дозы - уровень звука 80-90 дБ - дают стимулирующий эффект - микромассаж, ускорение обменных процессов. Большие дозы - уровень звука 120 и более дБ – дают поражающий эффект.
В поле ультразвуковых колебаний в живых тканях ультразвук оказывает механическое, термическое, физико-химическое воздействие (микромассаж клеток и тканей). При этом активизируются обменные процессы, повышаются иммунные свойства организма. Ультразвук оказывает выраженное обезболивающее, спазмолитическое, противовоспалительное и общетонизирующее действие, стимулирует крово- и лимфообращение, ускоряет регенеративные процессы, улучшает трофику тканей. Время воздействия на болевую зону 3-5 мин, а в сумме - на несколько зон - не более 12-15 мин на всю процедуру и не более 10-12 процедур раз в 3 месяца. Так как ультразвук полностью отражается от тончайших прослоек воздуха, к телу его подводят через безвоздушные контактные среды.
Литература
Агранат Б.А. и др. Основы физики и техники ультразвука. – М., 1987.
Баулан И. За барьером слышимости. – М., 1971.
Пахомова Н.Ю. Метод учебного проекта в образовательных учреждениях. – М., 2005.
Хорбенко И.Г. Звук, ультразвук, инфразвук. – М., 1986.
Хотунцев Ю.Л. Экология и экологическая без-опасность. – М., 2002.