САМАЯ БОЛЬШАЯ ПЛАНЕТА СОЛНЕЧНОЙ СИСТЕМЫ - Студенческий научный форум

VII Международная студенческая научная конференция Студенческий научный форум - 2015

САМАЯ БОЛЬШАЯ ПЛАНЕТА СОЛНЕЧНОЙ СИСТЕМЫ

Филатов А.А. 1, Френкель Е.Э. 1, Френкель Е.Э. 1, Кучер М.И. 1
1Вольский Военный институт материального обеспечения
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Общие сведения. Юпитер – самая крупная из планет-гигантов. Известен с древних времён. Движется вокруг Солнца на среднем расстоянии 5,203 а.е. (778 млн км). Эксцентриситет орбиты 0,048, наклон плоскости орбиты к плоскости эклиптики 1,3°. Полный оборот вокруг Солнца Юпитер совершает за 11,862 года, двигаясь со средней скоростью 13,06 км/с. Средний синодический период обращения 399 суток. За 12 лет Юпитер обходит всё небо вдоль эклиптики и в противостоянии виден как чуть желтоватая звезда – 2,6 звёздной вели­чины; уступает в блеске только Венере и Марсу во время великого противостояния.

Видимый диск Юпитера имеет форму эллипса, оси которого в среднем противостоянии видны под углом 46,5° и 43,7°. В соединении с Солнцем Юпитер имеет угловые размеры на 1/3 меньше, а блеск на 0,84 звёздной величины слабее, чем в противостояниях. Визуальное альбедо Юпитера равно 0,67. Экваториальный диаметр Юпитера равен 142 600 км, полярный – 134 140 км; сжатие Юпитера (1 : 15,9) обусловлено быстрым его осевым вращением. Период вращения близ экватора составляет 9 ч 50 мин 30 сек (РI), а на средних широтах – 9 ч 55 мин 40 сек (РII). Объём Юпитера превосходит объём Земли в 1315 раз, а масса – в 318 раз. Масса Юпитера составляет 1 : 1047,39 долю Солнца. Средняя плотность (1,33 г/см3) мало отличается от средней плотности Солнца. Ускорение силы притяжения на полюсе Юпитера равно 27,90 м/с2, на экваторе – 25,90 м/с2: центробежное ускорение на экваторе – 2,25 м/с2. Параболическая скорость (скорость убегания) на поверхности Юпитера равна 61 км/с. Все геометрические, механические и физические характеристики указаны по данным на 1974. Сведения о Юпитере и его спутниках были значительно обогащены результатами измерений и наблюдений, полученными американскими автоматическими межпланетными станциями «Пионер-10» (1973) и «Пионер-11» (1974).

Атмосфера Юпитера. Наблюдаемая поверхность Юпитера состоит из облаков и других атмосферных образований и пересечена многочисленными тёмными полосами (поясами), разделёнными светлыми зонами, расположенными параллельно экватору, который наклонён всего лишь на 3°04' к плоскости орбиты Юпитера. Полосы имеют разнообразную окраску и сложную структуру, которая постоянно изменяется. Особенно изменчив вид Южной и Северной экваториальных полос, которые временами исчезают, а затем восстанавливаются с намечающейся цикличностью около 4 лет. Очень узкая экваториальная полоса также нередко становится невидимой. Околополярные же области сравнительно устойчивы.

Количество тепла, приходящего от Солнца на единицу площади Юпитера, составляет 51,0 Вт/м2, т.е. в 27 раз меньше, чем на единицу площади Земли. Такое количество тепла способно нагреть поверхность Юпитер до температуры (равновесной) 110 К. Между тем прямые измерения как наземными средствами, так и с помощью космических зондов указывают на температуру до 145 К по измерениям инфракрасного излучения Юпитера и на более высокие значения – до 170 К в сантиметровом радиодиапазоне. В отдельных местах тёмных полос инфракрасное излучение в очень длинных волнах приводит к значениям температуры от 200 до 270 К. Рекордно высокая температура 310 К была обнаружена в одном тёмном пятне близ экватора. Такая температура может быть обусловлена только потоком тепла из недр планеты, превышающим поток, приходящий от Солнца, в 2 раза.

В облачной структуре Юпитера существуют более пли менее постоянные образования, примером которых служит Большое красное пятно (БКП), расположенное на широте около 22° в Южной тропической зоне. БКП имеет форму овала длиной до 40 000 км и шириной около 13 000 км. Цвет его – красный, но бывают годы, когда оно лишь с трудом выделяется на белом фоне зоны. Эффекты вращения и вертикальные движения в атмосфере в сочетании с различными уровнями облаков обусловливают сложную зависимость видимых систематических движений на разных удалениях от экватора. Периоды вращения РI и РII лишь в среднем описывают вращение атмосферы Юпитера. В действительности же систематически направленные ветры, действующие в той или иной полосе или зоне, приводят к сильно отличающимся значениям периода вращения.

Химический состав атмосферы Юпитера определяется спектроскопически. По сильным полосам поглощения раньше всего в атмосфере Юпитера были обнаружены метан СН4 и аммиак NН3. Позднее по слабым полосам в инфракрасной области спектра был обнаружен молекулярный водород Н2, затем пары воды Н2О, молекулы ацетилена С2Н2, этана С2Н6, фосфина РН3 и, наконец, окиси углерода СО.

Тёмные полосы Юпитера имеют аэрозольную природу и состоят из частиц диаметром 0,2 – 0,3 мкм. Над уровнем, где атмосферное давление составляет 1 атм (к нему относятся приведённые выше геометрические размеры Юпитера), располагаются кристаллы аммиака. Несколько ниже этого уровня находятся твёрдые частицы полисульфидов, ещё ниже – ледяные кристаллики воды и, наконец, на 60 км ниже этого уровня – взвешенные капли раствора аммиака в воде.

Объект исследования: строение планеты Юпитер.

Предмет исследования: Планета

Цель исследования: Изучить строение и свойства планеты.

Задачи исследования:

1) Наблюдение за планетой.

2) Изучить строение атмосферы.

3) Исследование полос и колец Юпитера.

4) Рассмотреть гипотезу наличия жизни на спутниках Юпитера.

Внутреннее строение Юпитера. Существуют несколько моделей строения Юпитера при разных предполо­жениях о его химическом составе. Вследствие большой силы тяжести на Юпитере давление газов возрастает с глубиной очень быстро и уже на расстоянии 10 тыс. км от поверхности ста­новится настолько большим, что преобладаю­щий газ (водород) изменяет своё состояние и переходит из нормальной молекулярной фазы в металлическую. С ростом температуры по мере приближения к центру планеты металлический водород расплавляется (температура вблизи центра Юпитера приближается к 20 000 К при давлении порядка 100 млн атм и плотности 20–30 г/см3). В некоторых моделях Юпитера предполагается существование слоя льда (Н2О) значительной толщины, но лишь вблизи поверхности, где температура невысока.

По-видимому, Юпитер имеет твёрдую оболочку сравнительно недалеко от поверхности. Пред­положение о существовании такой оболочки могло бы объяснить магнитное поле, жёстко вращающееся вместе с планетой, и неоднород­ности тепловых потоков, проявляющиеся в многочисленных деталях полос и особенно в дли­тельно существующих БКП, вращающихся почти с тем же периодом, что и магнитное поле Юпитера.

Магнитное поле Юпитера обнаруживается по сильному радиоизлучению, особенно интен­сивному в дециметровом и декаметровом диапазонах. Дециметровые волны исходят из околопланетного пространства и представляют собой синхротронное излучение электронов, захваченных магнитосферой Юпитера в радиационные пояса, подобные земным. Декаметровое излучение (на волне 7,5 м) имеет характер шумовых бурь, длящихся от нескольких часов до нескольких минут. Излучение направлено и исходит из определённых малых участков поверхности Юпитера. Из повторяемости радиовсплесков следует, что их источники вращаются с пе­риодом РIII = 9 ч 55 мин 30 сек. С периодом РIII изменяется также дециметровое излучение. Именно этот период приписывают вращению твёрдого слоя, собственно образующего поверхность Юпитера. Природа твёрдого слоя Юпитера пока ещё неясна. Его верхняя граница должна находиться вблизи видимой поверхности, нижняя же граница может быть расположена там, где металлический водород пе­реходит от твёрдой фазы к жидкой. На этой границе и в глубине жидкого ядра возникают электрические токи, являющиеся причиной маг­нитного поля Юпитера. Напряжённость магнитного поля Юпитера 4 Э. Направление магнитной оси Юпитера составляет угол около 10° с его осью вращения.

Магнитосфера Юпитера имеет очень большие размеры. В ближайших к планете областях (до 20 радиусов) она имеет явно выраженный дипольный характер и содержит радиационные поя­са, в которых движутся захваченные полем элек­троны, обладающие энергией свыше 6 Мэв. Их взаимодействие с полем порождает децимет­ровое синхротронное излучение. В более отда­лённых областях магнитосфера простира­ется до 60 планетных радиусов и деформиро­вана вращением. Здесь возможны плазмен­ные истечения и колебания, излучающие в декаметровом диапазоне. Ещё дальше, до 90–100 планетных радиусов, находится внешняя магнитосфера, простирающаяся до магнито-паузы, размеры которой изменчивы. С ночной стороны она простирается за орбиту Сатур­на. Все 5 ближайших к Юпитеру его спутников постоянно охвачены средней магнитосферой. Ближайший большой спутник — Ио обладает, по-видимому, своим магнитным полем и существенно влияет на частоту радиовсплес­ков Юпитера.

Спутники.

Известны 67 спутников Юпитера1. Первые 4 самых больших спутника были открыты Г. Галилеем в 1610. Пятый спутник – Юпитер V, открытый в 1892, почти три столетия спустя, – самый близкий к планете: он удалён от планеты всего лишь на 2,54 экваториальных радиуса Юпитера. Все эти спутники движутся практически по круговым орбитам, плоскости которых совпадают с плоскостью экватора Юпитера. Их периоды обращения – от 12 ч у Юпитера V до 16,8 сут у Юпитера IV. Все остальные спутники Юпитера, открытые в 20 веке и позднее, удалены от планеты на большие расстояния. В 1976 были заново утверждены названия спутников. Почти все они взяты из мифологии среди персонажей, так или иначе связанных с деятельностью Юпитера (первые 4 спутника были названы ещё Галилеем). Спутники разделяют на две большие группы – внутренние (8 спутников, галилеевы и негалилеевы внутренние спутники) и внешние (55 спутников, также подразделяются на две группы) – таким образом, всего получается 4 «разновидности».

Ниже приведены названия первых тринадцати спутников; в скобках даны их радиусы в км и видимые звёздные величины в противостоянии (данные на 1976 год):

I – Ио (1820; 4,9); II – Европа (1530; 5,3); III – Ганимед (2610; 4,6); IV – Каллисто (2450; 5,6); V – Амальтея (120; 13); VI – Гамалия (80; 14,2); VII – Элара (50; 17); VIII – Пасифея (12; 18); IX – Синопа (10; 18.6); X – Лизифоя (8; 18,3); XI – Карма (-9; 18,6); XII – Ананке (8; 18.7); XIII – Леда (5; 20).

Космический телескоп Hubble к своему юбилею продолжает радовать нас своими фантастическими снимками. На этих четырёх кадрах, сделанных 23 января 2015 года c интервалом в 40 минут виден «парад» трёх из четырех галилеевых спутников Юпитера на фоне планеты-гиганта. Прекрасно видны Ио, Каллисто и Европа, а также их тени. Четвёртый галилеев спутник, Ганимед (крупнейший в Солнечной системе, он больше Меркурия), в это время находился вне поля зрения камеры Wide Field Camera 3, установленной на Hubble во время последней сервисной миссии.

Галилеевы спутникb Юпитера – самые первые спутники планет, открытые человеком. В этом конкретном случае у человека есть имя: Галилео Галилей сообщил об открытии четырёх спутников крупнейшей планеты еще в 1610 году.

http://www.spacetelescope.org/news/heic1504/

Четыре галилеевых спутника по размерам своим приближаются к планетам (Ганимед и Каллисто больше Меркурия). Периоды их осевого вращения и обращения вокруг Юпитера совпадают. Средние плотности больше, чем у Юпитера: 2,89; 3,20; 2,07 и 1,54 г/см3. Все они имеют низкую температуру, близкую к равновесной. Их альбедо довольно высокое, но ниже, чем у Юпитера, что указывает скорее на особенности поверхности, чем на наличие мощной атмосферы. Действительно, радарные и ин­фракрасные наблюдения позволили уста­новить, что поверхность их составлена из льда или смеси льда и скал, т.к. отмечаются значит, неровности. «Пионер-10» и «Пионер-11» сфотографировали Ганимеда с близкого расстояния, причём были обнаружены устойчивые тёмные и светло-зеленые образования. Ио имеет атмосферу и значит, ионосферу. По близкому сов­падению плоскостей первых пяти спут­ников с плоскостью экватора Юпитера можно полагать, что эти спутники образовались одновременно с планетой из одного сгу­стка первичного вещества. Что касается остальных спутников, то они скорее всего в прошлом являлись астероидами и были захвачены Юпитером.

Гипотезы о существовании жизни в атмосфере Юпитера

В настоящее время наличие жизни на Юпитере представляется маловероятным: низкая концентрация воды в атмосфере, отсутствие твёрдой поверхности и т.д. Однако ещё в 1970-х годах американский астроном Карл Саган высказывался по поводу возможности существования в верхних слоях атмосферы Юпитера жизни на основе аммиака. Следует отметить, что даже на небольшой глубине в юпитерианской атмосфере температура и плотность достаточно высоки, и возможность, по крайней мере, химической эволюции исключать нельзя, поскольку скорость и вероятность протекания химических реакций благоприятствуют этому. Однако возможно существование на Юпитере и водно-углеводородной жизни: в слое атмосферы, содержащем облака из водяного пара, температура и давление также весьма благоприятны. Карл Саган совместно с Э.Э. Солпитером, проделав вычисления в рамках законов химии и физики, описали три воображаемые формы жизни, способные существовать в атмосфере Юпитера:

  • Синкеры (англ. sinker – «грузило») – крошечные организмы, размножение которых происходит очень быстро, и которые дают большое количество потомков. Это позволяет выжить части из них при наличии опасных конвекторных потоков, способных унести синкеров в горячие нижние слои атмосферы;

  • Флоатеры (англ. floater – «поплавок») – гигантские (величиной с земной город) организмы, подобные воздушным шарам. Флоатер откачивает из воздушного мешка гелий и оставляет водород, что позволяет ему держаться в верхних слоях атмосферы. Он может питаться органическими молекулами или вырабатывать их самостоятельно, подобно земным растениям.

  • Хантеры (англ. hunter – «охотник») – хищные организмы, охотники на флоатеров.

Атмосферные явления и феномены Движение атмосферы

Анимация вращения Юпитера, созданная по фотографиям с «Вояджера-1», 1979 г.

Скорость ветров на Юпитере может превышать 600 км/ч. В отличие от Земли, где циркуляция атмосферы происходит за счёт разницы солнечного нагрева в экваториальных и полярных областях, на Юпитере воздействие солнечной радиации на температурную циркуляцию незначительно; главными движущими силами являются потоки тепла, идущие из центра планеты, и энергия, выделяемая при быстром движении Юпитера вокруг своей оси.

Ещё по наземным наблюдениям астрономы разделили пояса и зоны в атмосфере Юпитера на экваториальные, тропические, умеренные и полярные. Поднимающиеся из глубин атмосферы нагретые массы газов в зонах под действием значительных на Юпитере кориолисовых сил вытягиваются вдоль параллелей планеты, причём противоположные края зон движутся навстречу друг другу. На границах зон и поясов (области нисходящих потоков) существует сильная турбулентность. Севернее экватора потоки в зонах, направленные к северу, отклоняются кориолисовыми силами к востоку, а направленные к югу – к западу. В южном полушарии – соответственно, наоборот. Схожей структурой на Земле обладают пассаты.

Полосы Юпитера

Июль 2009 Июль 2010

Характерной особенностью внешнего облика Юпитера являются его полосы. Существует ряд версий, объясняющих их происхождение. Так, по одной из версий, полосы возникали в результате явления конвекции в атмосфере планеты-гиганта – за счёт подогрева, и, как следствие, поднятия одних слоёв, и охлаждения и опускания вниз других. Весной 2010 года учёными была выдвинута гипотеза, согласно которой полосы на Юпитере возникли в результате воздействия его спутников. Предполагается, что под влиянием притяжения спутников на Юпитере сформировались своеобразные «столбы» вещества, которые, вращаясь, и сформировали полосы.

Конвективные потоки, выносящие внутреннее тепло к поверхности, внешне проявляются в виде светлых зон и тёмных поясов. В области светлых зон отмечается повышенное давление, соответствующее восходящим потокам. Облака, образующие зоны, располагаются на более высоком уровне (примерно на 20 км), а их светлая окраска объясняется, видимо, повышенной концентрацией ярко-белых кристаллов аммиака. Располагающиеся ниже тёмные облака поясов состоят, предположительно, из красно-коричневых кристаллов гидросульфида аммония и имеют более высокую температуру. Эти структуры представляют области нисходящих потоков. Зоны и пояса имеют разную скорость движения в направлении вращения Юпитера. Период обращения колеблется на несколько минут в зависимости от широты. Это приводит к существованию устойчивых зональных течений или ветров, постоянно дующих параллельно экватору в одном направлении. Скорости в этой глобальной системе достигают от 50 до 150 м/с и выше. На границах поясов и зон наблюдается сильная турбулентность, которая приводит к образованию многочисленных вихревых структур. Наиболее известным таким образованием является Большое красное пятно, наблюдающееся на поверхности Юпитера в течение последних 300 лет.

Возникнув, вихрь поднимает на поверхность облаков нагретые массы газа с пара́ми малых компонентов. Образующиеся кристаллы аммиачного снега, растворов и соединений аммиака в виде снега и капель, обычного водяного снега и льда постепенно опускаются в атмосфере, пока не достигают уровней, на которых температура достаточна высока, и испаряются. После чего вещество в газообразном состоянии снова возвращается в облачный слой.

Летом 2007 года телескоп «Хаббл» зафиксировал резкие изменения в атмосфере Юпитера. Отдельные зоны в атмосфере к северу и югу от экватора превратились в пояса, а пояса – в зоны. При этом изменились не только формы атмосферных образований, но и их цвет

9 мая 2010 года астроном-любитель Энтони Уэсли (англ. AnthonyWesley) обнаружил, что с лика планеты внезапно исчезло одно из самых заметных и самых стабильных во времени образований – Южный экваториальный пояс. Именно на широте Южного экваториального пояса расположено «омываемое» им Большое красное пятно. Причиной внезапного исчезновения Южного экваториального пояса Юпитера считается появление над ним слоя более светлых облаков, под которыми и скрывается полоса тёмных облаков. По данным исследований, проведённых телескопом «Хаббл», был сделан вывод о том, что пояс не исчез полностью, а просто оказался скрыт под слоем облаков, состоящих из аммиака.

Расположение полос, их ширины, скорости вращения, турбулентность и яркость периодически изменяются. В каждой полосе развивается свой цикл с периодом порядка 3–6 лет. Наблюдаются и глобальные колебания с периодом 11–13 лет. Численный эксперимент даёт основание считать эту переменность подобной явлению цикла индекса, наблюдаемому на Земле.

Большое красное пятно

Большое красное пятно Юпитера, 1 марта 1979 г. (фото «Вояджера-1»).

Большое красное пятно – овальное образование изменяющихся размеров, расположенное в южной тропической зоне. Было открыто Робертом Гуком в 1664 году. В настоящее время оно имеет размеры 15×30 тыс. км (диаметр Земли ~12,7 тыс. км), а 100 лет назад наблюдатели отмечали в 2 раза бо́льшие размеры. Иногда оно бывает не очень чётко видимым. Большое красное пятно – это уникальный долгоживущий гигантский, вещество в котором вращается против часовой стрелки и совершает полный оборот за 6 земных суток.

Благодаря исследованиям, проведённым в конце 2000 года зондом «Кассини», было выяснено, что Большое красное пятно связано с нисходящими потоками (вертикальная циркуляция атмосферных масс); облака здесь выше, а температура ниже, чем в остальных областях. Цвет облаков зависит от высоты: синие структуры – самые верхние, под ними лежат коричневые, затем белые. Красные структуры – самые низкие. Скорость вращения Большого красного пятна составляет 360 км/ч. Его средняя температура составляет −163 °C, причём между окраинными и центральными частями пятна наблюдается различие в температуре порядка 3–4 градусов. Это различие, как предполагается, ответственно за тот факт, что атмосферные газы в центре пятна вращаются по часовой стрелке, в то время как на окраинах – против. Также выдвинуто предположение о взаимосвязи температуры, давления, движения и цвета Красного пятна, хотя как именно она осуществляется, учёные пока затрудняются сказать.

Время от времени на Юпитере наблюдаются столкновения больших циклонических систем. Одно из них произошло в 1975 году, в результате чего красный цвет Пятна поблёк на несколько лет. В конце февраля 2002 года ещё один гигантский вихрь – Белый овал – начал тормозиться Большим красным пятном, и столкновение продолжалось целый месяц. Однако оно не нанесло серьёзного ущерба обоим вихрям, так как произошло по касательной.

Красный цвет Большого красного пятна представляет собой загадку. Одной из возможных причин могут быть химические соединения, содержащие фосфор. Цвета и механизмы, создающие вид всей юпитерианской атмосферы, до сих пор ещё плохо поняты и могут быть объяснены только при прямых измерениях её параметров.

В 1938 году было зафиксировано формирование и развитие трёх больших белых овалов вблизи 30° южной широты. Этот процесс сопровождался одновременным формированием ещё нескольких маленьких белых овалов – вихрей. Это подтверждает, что Большое красное пятно представляет собой самый мощный из юпитерианских вихрей. Исторические записи не обнаруживают подобных долго существующих систем в средних северных широтах планеты. Наблюдались большие тёмные овалы вблизи 15° северной широты, но, видимо, необходимые условия для возникновения вихрей и последующего их превращения в устойчивые системы, подобные Красному пятну, существуют только в Южном полушарии.

Малое красное пятно

Большое красное пятно и «Малое красное пятно» в мае 2008 на фотографии, сделанной телескопом «Хаббл»

Что же касается трёх вышеупомянутых белых вихрей-овалов, то два из них объединились в 1998 году, а в 2000 году возникший новый вихрь слился с оставшимся третьим овалом. В конце 2005 года вихрь (Овал ВА, англ. OvalBC) начал менять свой цвет, приобретя в конце концов красную окраску, за что получил новое название – Малое красное пятно. В июле 2006 года Малое красное пятно соприкоснулось со своим старшим «собратом» – Большим красным пятном. Тем не менее, это не оказало какого-либо существенного влияния на оба вихря – столкновение произошло по касательной. Столкновение было предсказано ещё в первой половине 2006 года.

Молнии

Молнии (яркие вспышки на нижнем квадрате), связанные со штормом на Юпитере.

В центре вихря давление оказывается более высоким, чем в окружающем районе, а сами ураганы окружены возмущениями с низким давлением. По снимкам, сделанными космическими зондами «Вояджер-1» и «Вояджер-2», было установлено, что в центре таких вихрей наблюдаются колоссальных размеров вспышки молний протяжённостью в тысячи километров. Мощность молний на три порядка превышает земные.

Горячие тени от спутников

Ещё одним непонятным явлением можно назвать «горячие тени». Согласно данным радиоизмерений, проведённым в 1960-х годах, в местах, куда на Юпитер падают тени от его спутников, температура заметно повышается, а не понижается, как можно было бы ожидать.

Магнитное поле и магнитосфера

Схема магнитного поля Юпитера

Первый признак любого магнитного поля – радио- и рентгеновское излучение. О строении магнитного поля можно судить с помощью моделей происходящих процессов. Так было установлено, что магнитное поле Юпитера имеет не только дипольную составляющую, но и квадруполь, октуполь и другие гармоники более высоких порядков. Предполагается, что магнитное поле создаётся динамо-машиной, похожей на земную. Но в отличие от Земли, проводником токов на Юпитере служит слой металлического гелия.

Ось магнитного поля наклонена к оси вращения 10,2 ± 0,6°, почти как и на Земле, однако, северный магнитный полюс расположен рядом с южным географическим, а южный магнитный – с северным географическим. Напряжённость поля на уровне видимой поверхности облаков равна 14 Э у северного полюса и 10,7 Э у южного. Его полярность обратна полярности земного магнитного поля.

Форма магнитного поля у Юпитера сильно сплюснута и напоминает диск (в отличие от каплевидной у Земли). Центробежная сила, действующая на вращающуюся плазму с одной стороны и тепловое давление горячей плазмы с другой, растягивает силовые линии, образуя на расстоянии 20 RJ структуру, напоминающую тонкий блин, также известную как магнитодиск. Он имеет тонкую токовую структуру вблизи магнитного экватора.

Вокруг Юпитера, как и вокруг большинства планет Солнечной системы, существует магнитосфера – область, в которой поведение заряженных частиц, плазмы, определяется магнитным полем. Для Юпитера источниками таких частиц являются солнечный ветер и его спутник Ио. Вулканический пепел, выбрасываемый вулканами Ио, ионизируется под действием солнечного ультрафиолета. Так образуются ионы серы и кислорода: S+, O+, S2+ и O2+. Эти частицы покидают атмосферу спутника, однако остаются на орбите вокруг него, образуя тор. Этот тор был открыт аппаратом «Вояджер-1», он лежит в плоскости экватора Юпитера и имеет радиус в 1 RJ в поперечном сечении и радиус от центра (в данном случае от центра Юпитера) до образующей поверхности в 5,9 RJ. Именно он определяет динамику магнитосферы Юпитера.

Магнитосфера Юпитера. Захваченные магнитным полем ионы солнечного ветра на схеме показаны красным цветом, пояс нейтрального вулканического газа Ио – зелёным, пояс нейтрального газа Европы – синим. ENA – нейтральные атомы. По данным зонда «Кассини», полученным в начале 2001 г.

Набегающий солнечный ветер уравновешивается давлением магнитного поля на расстоянии в 50–100 радиусов планеты, без влияния Ио это расстояние было бы не более 42 RJ. На ночной стороне протягивается за орбиту Сатурна достигая в длину 650 млн км и более. Ускоренные в магнитосфере Юпитера электроны достигают Земли. Если бы магнитосферу Юпитера можно было видеть с поверхности Земли, то её угловые размеры превышали бы размеры Луны.

Радиационные пояса

Юпитер обладает мощными радиационными поясами. При сближении с Юпитером «Галилео» получил дозу радиации, в 25 раз превышающую смертельную дозу для человека. Излучение радиационного пояса Юпитера в радиодиапазоне впервые было обнаружено в 1955 году. Радиоизлучение носит синхротронный характер. Электроны в радиационных поясах обладают огромной энергией, составляющей около 20 МэВ, при этом зондом «Кассини» было обнаружено, что плотность электронов в радиационных поясах Юпитера ниже, чем ожидалось. Поток электронов в радиационных поясах Юпитера может представлять серьёзную опасность для космических аппаратов ввиду большого риска повреждения аппаратуры радиацией. Вообще, радиоизлучение Юпитера не является строго однородным и постоянным – как по времени, так и по частоте. Средняя частота такого излучения, по данным исследований, составляет порядка 20 МГц, а весь диапазон частот – от 5–10 до 39,5 МГц.

Юпитер окружён ионосферой протяжённостью 3000 км.

Полярные сияния на Юпитере

Структура полярных сияний на Юпитере: показано основное кольцо, полярное излучение и пятна, возникшие как результат взаимодействия с естественными спутниками Юпитера.

Юпитер демонстрирует яркие устойчивые сияния вокруг обоих полюсов. В отличие от таких же на Земле, которые появляются в периоды повышенной солнечной активности, полярные сияния Юпитера являются постоянными, хотя их интенсивность меняется изо дня в день. Они состоят из трёх главных компонентов: основная и наиболее яркая область сравнительно небольшая (менее 1000 км в ширину), расположена примерно в 16° от магнитных полюсов; горячие пятна – следы магнитных силовых линий, соединяющих ионосферы спутников с ионосферой Юпитера, и области кратковременных выбросов, расположенных внутри основного кольца. Выбросы полярных сияний были обнаружены почти во всех частях электромагнитного спектра от радиоволн до рентгеновских лучей (до 3 кэВ), однако они наиболее ярки в среднем инфракрасном диапазоне (длина волны 3–4 мкм и 7–14 мкм) и глубокой ультрафиолетовой области спектра (длина волны 80–180 нм).

Положение основных авроральных колец устойчиво, как и их форма. Однако их излучение сильно модулируется давлением солнечного ветра – чем сильнее ветер, тем слабее полярные сияния. Стабильность сияний поддерживается большим притоком электронов, ускоряемых за счёт разности потенциалов между ионосферой и магнитодиском. Эти электроны порождает ток, который поддерживает синхронность вращения в магнитодиске. Энергия этих электронов 10 – 100 кэВ; проникая глубоко внутрь атмосферы, они ионизируют и возбуждают молекулярный водород, вызывая ультрафиолетовое излучение. Кроме того, они разогревают ионосферу, чем объясняется сильное инфракрасное излучение полярных сияний и частично нагрев термосферы.

Горячие пятна связаны с тремя Галилеевыми спутниками: Ио, Европа и Ганимед. Они возникают из-за того, что вращающаяся плазма замедляется вблизи спутников. Самые яркие пятна принадлежат Ио, поскольку этот спутник является основным поставщиком плазмы, пятна Европы и Ганимеда гораздо слабее. Яркие пятна внутри основных колец, появляющиеся время от времени, как считается, связаны с взаимодействием магнитосферы и солнечного ветра.

Большое рентгеновское пятно

Комбинированное фото Юпитера с телескопа «Хаббл» и с рентгеновского телескопа «Чандра» – февраль 2007 г.

Орбитальным телескопом «Чандра» в декабре 2000 года на полюсах Юпитера (главным образом, на северном полюсе) обнаружен источник пульсирующего рентгеновского излучения, названный Большим рентгеновским пятном. Причины этого излучения пока представляют загадку

Модели формирования и эволюции.

Значительный вклад в наши представления о формировании и эволюции звёзд вносят наблюдения экзопланет. Так, с их помощью были установлены черты, общие для всех планет, подобных Юпитеру:

  • Они образуются ещё до момента рассеяния протопланетного диска.

  • Значительную роль в формировании играет аккреция.

  • Обогащение тяжёлыми химическими элементами за счёт планетезималей.

Существуют две основные гипотезы, объясняющие процессы возникновения и формирования Юпитера.

Согласно первой гипотезе, получившей название гипотезы «контракции», относительное сходство химического состава Юпитера и Солнца (большая доля водорода и гелия) объясняется тем, что в процессе формирования планет на ранних стадиях развития Солнечной системы в газопылевом диске образовались массивные «сгущения», давшие начало планетам, то есть Солнце и планеты формировались схожим образом. Правда, эта гипотеза не объясняет всё-таки имеющиеся различия в химическом составе планет: Сатурн, например, содержит больше тяжёлых химических элементов, чем Юпитер, а тот, в свою очередь, больше, чем Солнце. Планеты же земной группы вообще разительно отличаются по своему химическому составу от планет-гигантов.

Вторая гипотеза (гипотеза «аккреции») гласит, что процесс образования Юпитера, а также Сатурна, происходил в два этапа. Сначала в течение нескольких десятков миллионов лет шёл процесс формирования твёрдых плотных тел, наподобие планет земной группы. Затем начался второй этап, когда на протяжении нескольких сотен тысяч лет длился процесс аккреции газа из первичного протопланетного облака на эти тела, достигшие к тому моменту массы в несколько масс Земли.

Ещё на первом этапе из области Юпитера и Сатурна диссипировала часть газа, что повлекло за собой некоторые различия в химическом составе этих планет и Солнца. На втором этапе температура наружных слоёв Юпитера и Сатурна достигала 5000 °C и 2000 °C соответственно Уран и Нептун же достигли критической массы, необходимой для начала аккреции, гораздо позже, что повлияло как на их массы, так и на химический состав.

В 2004 году Катариной Лоддерс из Университета Вашингтона была выдвинута гипотеза о том, что ядро Юпитера состоит в основном из некоего органического вещества, обладающего клеящими способностями, что, в свою очередь, в немалой степени повлияло на захват ядром вещества из окружающей области пространства. Образовавшееся в результате каменное-смоляное ядро силой своего притяжения «захватило» газ из солнечной туманности, сформировав современный Юпитер. Эта идея вписывается во вторую гипотезу о возникновении Юпитера путём аккреции.

Будущее Юпитера и его спутников

Известно, что Солнце в результате постепенного исчерпания своего термоядерного топлива увеличивает свою светимость примерно на 11 % каждые 1,1 млрд лети в результате этого его околозвёздная обитаемая зона сместится за пределы современной земной орбиты, пока не достигнет системы Юпитера. Увеличение яркости Солнца в этот период разогреет спутники Юпитера, позволив высвободиться на их поверхность жидкой воде а значит, создаст условия для поддержания жизни. Через 7,59 миллиарда лет Солнце станет красным гигантом. Модель показывает, что расстояние между Солнцем и газовым гигантом сократится с 765 до 500 млн км. В таких условиях Юпитер перейдёт в новый класс планет, называемый «горячие юпитеры». Температура на его поверхности достигнет 1000 К, что вызовет тёмно-красное свечение планеты. Спутники станут непригодными для поддержания жизни и будут представлять собой иссушенные раскалённые пустыни.

Спутники и кольца

По данным на октябрь 2014 года, у Юпитера известно 67 спутников – наибольшее значение среди планет Солнечной системы. По оценкам, спутников может быть не менее сотни. Спутникам даны в основном имена различных мифических персонажей, так или иначе связанных с Зевсом-Юпитером. Спутники разделяют на две большие группы – внутренние (8 спутников, галилеевы и негалилеевы внутренние спутники) и внешние (55 спутников, также подразделяются на две группы) – таким образом, всего получается 4 «разновидности». Четыре самых крупных спутника – Ио, Европа, Ганимед и Каллисто – были открыты ещё в 1610 году Галилео Галилеем. Открытие спутников Юпитера послужило первым серьёзным фактическим доводом в пользу гелиоцентрической системы Коперника.

Европа

Наибольший интерес представляет Европа, обладающая глобальным океаном, в котором не исключено наличие жизни. Специальные исследования показали, что океан простирается вглубь на 90 км, его объём превосходит объём земного Мирового океана. Поверхность Европы испещрена разломами и трещинами, возникшими в ледяном панцире спутника. Высказывалось предположение, что источником тепла для Европы служит именно сам океан, а не ядро спутника. Существование подлёдного океана предполагается также на Каллисто и Ганимеде. Основываясь на предположении о том, что за 1–2 млрд лет кислород мог проникнуть в подлёдный океан, учёные теоретически предполагают наличие жизни на спутнике. Содержание кислорода в океане Европы достаточно для поддержания существования не только одноклеточных форм жизни, но и более крупных. Этот спутник занимает второе место по возможности возникновения жизни послеЭнцелада.

Ио

Прохождение спутника Ио перед Юпитером, 24 июля 1996 г., телескоп «Хаббл».

Вулканическая активность Ио, КА «Новые горизонты», 1 марта 2007 г.

Ио интересен наличием мощных действующих вулканов; поверхность спутника залита продуктами вулканической активности. На фотографиях, сделанных космическими зондами, видно, что поверхность Ио имеет ярко-жёлтую окраску с пятнами коричневого, красного и тёмно-жёлтого цветов. Эти пятна – продукт извержений вулканов Ио, состоящих преимущественно из серы и её соединений; цвет извержений зависит от их температуры.

Ганимед

Ганимед является самым большим спутником не только Юпитера, но и вообще в Солнечной системе среди всех спутников планет. Ганимед и Каллисто покрыты многочисленными кратерами, на Каллисто многие из них окружены трещинами.

Каллисто

На Каллисто, как предполагается, также есть океан под поверхностью спутника; на это косвенно указывает магнитное поле Каллисто, которое может быть порождено наличием электрических токов в солёной воде внутри спутника. Также в пользу этой гипотезы свидетельствует тот факт, что магнитное поле у Каллисто меняется в зависимости от его ориентации на магнитное поле Юпитера, то есть существует высокопроводящая жидкость под поверхностью данного спутника.

Особенности галилеевых спутников

Все крупные спутники Юпитера вращаются синхронно и всегда обращены к Юпитеру одной и той же стороной вследствие влияния мощных приливных сил планеты-гиганта. При этом Ганимед, Европа и Ио находятся друг с другом в орбитальном резонансе 4:2:1. К тому же среди спутников Юпитера существует закономерность: чем дальше спутник от планеты, тем меньше его плотность (у Ио – 3,53 г/см³, Европы – 2,99 г/см³, Ганимеда – 1,94 г/см³, Каллисто – 1,83 г/см³). Это зависит от количества воды на спутнике: на Ио её практически нет, на Европе – 8 %, на Ганимеде и Каллисто – до половины их массы.

Малые спутники Юпитера

Остальные спутники намного меньше и представляют собой скалистые тела неправильной формы. Среди них есть обращающиеся в обратную сторону. Из числа малых спутников Юпитера немалый интерес для учёных представляет Амальтея: как предполагается, внутри неё существует система пустот, возникших в результате имевшей место в далёком прошлом катастрофы – из-за метеоритной бомбардировки Амальтея распалась на части, которые затем вновь соединились под действием взаимной гравитации, но так и не стали единым монолитным телом.

Метида и Адрастея – ближайшие спутники к Юпитеру с диаметрами примерно 40 и 20 км соответственно. Они движутся по краю главного кольца Юпитера по орбите радиусом 128 тысяч км, делая оборот вокруг Юпитера за 7 часов и являясь при этом самыми быстрыми спутниками Юпитера

Общий диаметр всей системы спутников Юпитера составляет 24 млн км. Более того, предполагается, что в прошлом спутников у Юпитера было ещё больше, но некоторые из них упали на планету под воздействием её мощной гравитации.

Спутники с обратным вращением вокруг Юпитера

Спутники Юпитера, чьи названия заканчиваются на «е» – Карме, Синопе, Ананке, Пасифе и другие (см. группа Ананке, группа Карме, группа Пасифе) – обращаются вокруг планеты в обратном направлении (ретроградное движение) и, по предположениям учёных, образовались не вместе с Юпитером, а были захвачены им позже. Аналогичным свойством обладает спутник Нептуна Тритон.

Временные луны Юпитера

Некоторые кометы представляют собой временные луны Юпитера. Так, в частности, комета Кусиды – Мурамацу в период с 1949 по 1961 г. была спутником Юпитера, совершив за это время вокруг планеты два оборота. Кроме данного объекта известно ещё, как минимум, о 4 временных лунах планеты-гиганта.

Кольца Юпитера

Фотография колец Юпитера, сделанная «Галилео» в прямом рассеянном свете.

У Юпитера имеются слабые кольца, обнаруженные во время прохождения «Вояджера-1» мимо Юпитера в 1979 году. Наличие колец предполагал ещё в 1960 году советский астроном Сергей Всехсвятский: на основе исследования дальних точек орбит некоторых комет Всехсвятский заключил, что эти кометы могут происходить из кольца Юпитера и предположил, что образовалось кольцо в результате вулканической деятельности спутников Юпитера (вулканы на Ио открыты два десятилетия спустя).

Кольца оптически тонки, оптическая толщина их ~10−6, а альбедо частиц всего 1,5 %. Однако наблюдать их всё же возможно: при фазовых углах, близких к 180 градусам (взгляд «против света»), яркость колец возрастает примерно в 100 раз, а тёмная ночная сторона Юпитера не оставляет засветки. Всего колец три: одно главное, «паутинное» и гало.

Главное кольцо простирается от 122 500 до 129 230 км от центра Юпитера. Внутри главное кольцо переходит в тороидальное гало, а снаружи контактирует с паутинным. Наблюдаемое прямое рассеяние излучения в оптическом диапазоне характерно для пылевых частиц микронного размера. Однако пыль в окрестности Юпитера подвергается мощным негравитационным возмущениям, из-за этого время жизни пылинок 103±1 лет. Это означает, что должен быть источник этих пылинок. На роль подобных источников подходят два малых спутника, лежащих внутри главного кольца – Метида и Адрастея. Сталкиваясь с метеороидами, они порождают рой микрочастиц, которые впоследствии распространяются по орбите вокруг Юпитера. Наблюдения паутинного кольца выявили два отдельных пояса вещества, берущих начало на орбитах Фивы и Амальтеи. Структура этих поясов напоминает строение зодиакальных пылевых комплексов.

Троянские астероиды

Главный пояс астероидов (белый) и троянские астероиды Юпитера (зелёные)

Троянские астероиды — группа астероидов, расположенных в районе точек Лагранжа L4 и L5 Юпитера. Астероиды находятся с Юпитером в резонансе 1:1 и движутся вместе с ним по орбите вокруг Солнца. При этом существует традиция называть объекты, расположенные около точки L4, именами греческих героев, а около L5 – троянских. Всего на июнь 2010 года открыто 1583 таких объекта.

Существует две теории, объясняющих происхождение троянцев. Первая утверждает, что они возникли на конечном этапе формирования Юпитера (рассматривается аккрецирующий вариант). Вместе с веществом были захвачены планетозимали, на которые тоже шла аккреция, а так как механизм был эффективным, то половина из них оказались в гравитационной ловушке. Недостатки этой теории: число объектов, возникших таким образом, на четыре порядка больше наблюдаемого, и они имеют гораздо больший наклон орбиты.

Вторая теория – динамическая. Через 300–500 млн лет после формирования солнечной системы Юпитер и Сатурн проходили через резонанс 1:2. Это привело к перестройке орбит: Нептун, Плутон и Сатурн увеличили радиус орбиты, а Юпитер уменьшил. Это повлияло на гравитационную устойчивость пояса Койпера, и часть астероидов, его населявших, переселились на орбиту Юпитера. Одновременно с этим были разрушены все изначальные троянцы, если таковые были.

Дальнейшая судьба троянцев неизвестна. Ряд слабых резонансов Юпитера и Сатурна заставит их хаотично двигаться, но какова будет эта сила хаотичного движения и будут ли они выброшены со своей нынешней орбиты, трудно сказать. Кроме этого, столкновения между собой медленно, но верно уменьшают количество троянцев. Какие-то фрагменты могут стать спутниками, а какие-то кометами.

Столкновения небесных тел с Юпитером Комета Шумейкеров – Леви

След от одного из обломков кометы Шумейкеров-Леви, снимок с телескопа «Хаббл», июль 1994 г.

В июле 1992 года к Юпитеру приблизилась комета. Она прошла на расстоянии около 15 тысяч километров от верхней границы облаков, и мощное гравитационное воздействие планеты-гиганта разорвало её ядро на 17 больших частей. Этот кометный рой был обнаружен на обсерватории Маунт-Паломар супругами Кэролин и Юджином Шумейкерами и астрономом-любителем Дэвидом Леви. В 1994 году, при следующем сближении с Юпитером, все обломки кометы врезались в атмосферу планеты с огромной скоростью – около 64 километров в секунду. Этот грандиозный космический катаклизм наблюдался как с Земли, так и с помощью космических средств, в частности, с помощью космического телескопа «Хаббл», спутника IUE и межпланетной космической станции «Галилео». Падение ядер сопровождалось вспышками излучения в широком спектральном диапазоне, генерацией газовых выбросов и формированием долгоживущих вихрей, изменением радиационных поясов Юпитера и появлением полярных сияний, ослаблением яркости плазменного тора Ио в крайнем ультрафиолетовом диапазоне.

Другие падения

Пятно в районе Южного полюса Юпитера – 20 июля 2009, инфракрасный телескоп в обсерватории Мауна-Кеа, Гавайи.

19 июля 2009 года уже упомянутый выше астроном-любитель Энтони Уэсли (англ. AnthonyWesley) обнаружил тёмное пятно в районе Южного полюса Юпитера. В дальнейшем эту находку подтвердили в обсерватории Кек на Гавайях. Анализ полученных данных указал, что наиболее вероятным телом упавшим в атмосферу Юпитера был каменный астероид.

3 июня 2010 года в 20:31 по международному времени два независимых наблюдателя – Энтони Уэсли (англ. AnthonyWesley, Австралия) и Кристофер Го (англ. ChristopherGo, Филиппины) – засняли вспышку над атмосферой Юпитера, что, скорее всего, является падением нового, ранее неизвестного тела на Юпитер. Через сутки после данного события новые тёмные пятна в атмосфере Юпитера не обнаружены. Уже проведены наблюдения на крупнейших инструментах Гавайских островов (Gemini, Keck и IRTF) и запланированы наблюдения на космическом телескопе «Хаббл». 16 июня 2010 года НАСА опубликовало пресс-релиз, в котором сообщается, что на снимках, полученных на космическом телескопе «Хаббл» 7 июня 2010 года (через 4 суток после фиксирования вспышки), не обнаружены признаки падения в верхних слоях атмосферы Юпитера.

20 августа 2010 года в 18:21:56 по международному времени произошла вспышка над облачным покровом Юпитера, которую обнаружил японский астроном-любитель Масаюки Татикава из префектуры Кумамото на сделанной им видеозаписи. На следующий день после объявления о данном событии нашлось подтверждение от независимого наблюдателя Аоки Кадзуо (Aoki Kazuo) – любителя астрономии из Токио. Предположительно, это могло быть падение астероида или кометы в атмосферу планеты-гиганта.

Название и история изучения

Юпитер и Юнона. Автор – Хендрик Гольциус (1558–1617)

Юпитер в древних культурах

В месопотамской культуре планета называлась Мулу-баббар (шумер. MUL2.BABBAR, аккад. kakkabu peṣû), то есть «белая звезда». Вавилоняне впервые разработали теорию для объяснения видимого движения Юпитера и связали планету с богом Мардуком. Подробное описание 12-летнего цикла движения Юпитера было дано китайскими астрономами, называвшими планету Суй-син («Звезда года»). Инки называли Юпитер кечуа Pirwa – «амбар, склад», что может свидетельствовать о наблюдении инками галилеевых спутников (сравним кечуа Qullqa «Плеяды», буквально «склад»). Греки именовали его Φαέθων – «сияющий, блестящий», а также Διὸς ὁ ἀστήρ – «звезда Зевса». Римляне дали этой планете название в честь своего бога Юпитера.

XVII век: Галилей, Кассини, Рёмер

В начале XVII века Галилео Галилей изучал Юпитер с помощью изобретённого им телескопа и открыл четыре крупнейших спутника планеты. В 1660-х годах Джованни Кассини наблюдал пятна и полосы на «поверхности» гиганта. В 1671 году, наблюдая за затмениями спутников Юпитера, датский астроном Оле Рёмер обнаружил, что истинное положение спутников не совпадает с вычисленными параметрами, причём величина отклонения зависела от расстояния до Земли. На основании этих наблюдений Рёмер сделал вывод о конечности скорости света и установил её величину – 215000 км/с (современное значение – 299792,458 км/с).

Использованные литературные источники

1. Долгинов Ш.Ш., Магнетизм планет, М., 1974.

2. Жарков В.Н. Внутреннее строение Земли, Луны и планет. М., 1973.

3.Мороз В.И. Физика планет, М., 1967.

4. Интернет-ресурсы:

Википедия:

"Юпитер" https://ru.wikipedia.org/wiki/%DE%EF%E8%F2%E5%F0

другие статьи по теме:

https://ru.wikiquote.org/wiki/%D0%AE%D0%BF%D0%B8%D1%82%D0%B5%D1%80_%28%D0%BF%D0%BB%D0%B0%D0%BD%D0%B5%D1%82%D0%B0%29

https://ru.wikipedia.org/wiki/%DE%EF%E8%F2%E5%F0_%28%EC%E8%F4%EE%EB%EE%E3%E8%FF%29

1 данные на октябрь 2014. Предполагают, что их не менее сотни.

Просмотров работы: 1615