КОРРОЗИЯ МЕТАЛЛОВ И СОВРЕМЕННЫЕ МЕРЫ БОРЬБЫ С НЕЙ В ВООРУЖЁННЫХ СИЛАХ РОССИЙСКОЙ ФЕДЕРАЦИИ - Студенческий научный форум

VII Международная студенческая научная конференция Студенческий научный форум - 2015

КОРРОЗИЯ МЕТАЛЛОВ И СОВРЕМЕННЫЕ МЕРЫ БОРЬБЫ С НЕЙ В ВООРУЖЁННЫХ СИЛАХ РОССИЙСКОЙ ФЕДЕРАЦИИ

Филонова В.А. 1, Филонова В.А. 1, Фроловичева Е.А. 1, Шеина В.В. 1, Френкель Е.Н. 1
1Вольский Военный институт материального обеспечения
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
ВВЕДЕНИЕ

Термин коррозия происходит от латинского слова corrodere, что означает разъедать, разрушать.

Коррозия – это самопроизвольный процесс разрушения материалов и изделий из них под химическим воздействием окружающей среды.

Коррозия металлов – разрушение металлов вследствие физико-химического воздействия внешней среды, при котором металл переходит в окисленное (ионное) состояние и теряет присущие ему свойства.

В тех случаях, когда окисление металла необходимо для осуществления какого-либо технологического процесса, термин «коррозия» употреблять не следует. Например, нельзя говорить о коррозии растворимого анода в гальванической ванне, поскольку анод должен окислятся, посылая свои ионы в раствор, чтобы протекал нужный процесс. Нельзя также говорить о коррозии алюминия при осуществлении алюмотермического процесса. Но физико-химическая сущность изменений, происходящих с металлом во всех подобных случаях, одинакова: металл окисляется.

1. ХАРАКТЕРИСТИКИ И СУЩНОСТЬ КОРРОЗИОННЫХ ПРОЦЕССОВ.

КЛАССИФИКАЦИЯ КОРРОЗИОННЫХ СРЕД

Среда, в которой металл подвергается коррозии (коррозирует) называется коррозионной или агрессивной средой. По степени воздействия на металлы коррозионные среды целесообразно разделить на:

-неагрессивные;

-слабоагрессивные;

-среднеагрессивные;

-сильноагрессивные.

Для определения степени агрессивности среды при атмосферной коррозии необходимо учитывать условия эксплуатации металлических конструкций зданий и сооружений. Степень агрессивности среды по отношению к конструкциям внутри отапливаемых и неотапливаемых зданий, зданий без стен и постоянно аэрируемых зданий определяется возможностью конденсации влаги, а также температурно-влажностным режимом и концентрацией газов и пыли внутри здания. Степень агрессивности среды по отношению к конструкциям на открытом воздухе, не защищенным от непосредственного попадания атмосферных осадков, определяется климатической зоной и концентрацией газов и пыли в воздухе. С учетом влияния метеорологических факторов и агрессивности газов разработана классификация степени агрессивности сред по отношению к строительным металлическим конструкциям. С учетом влияния метеорологических факторов и агрессивности газов разработана классификация степени агрессивности сред по отношению к строительным металлическим конструкциям, которые представлены в таблице:

Относительная

влажность внутри

помещений и

Степень агрессивности среды в зависимости от условий эксплуатации конструкций

характеристика климатической зоны

на открытом

воздухе

внутри зданий

   

в условиях периодической конденсации влаги

без конденсации влаги

60 %

сухая

слабая

слабая

средняя

сильная

неагрессивная

слабая

средняя

средняя

неагрессивная

неагрессивная

слабая

средняя

61-75 %

нормальная

слабая

средняя

средняя

сильная

слабая

средняя

средняя

сильная

неагрессивная

слабая

средняя

средняя

более 75 %

влажная

средняя

средняя

сильная

сильная

слабая

средняя

сильная

сильная

слабая

средняя

средняя

средняя

Таким образом, защита металлических конструкций от коррозии определяется агрессивностью условий их эксплуатации. Наиболее надежными защитными системами металлических конструкций являются алюминиевые и цинковые покрытия.

1.1 Скорость коррозии

Скорость коррозии металлов и металлических покрытий в атмосферных условиях определяется комплексным воздействием ряда факторов: наличием на поверхности фазовых и адсорбционных пленок влаги, загрязненностью воздуха коррозионно-агрессивными веществами, изменением температуры воздуха и металла, образованием продуктов коррозии и так далее.

Оценка и расчет скорости коррозии должны основываться на учете продолжительности и материальном коррозионном эффекте действия на металл наиболее агрессивных факторов.

В зависимости от факторов, влияющих на скорость коррозии, целесообразно следующее подразделение условий эксплуатации металлов, подвергаемых атмосферной коррозии:

-закрытые помещения с внутренними источниками тепла и влаги (отапливаемые помещения);

-закрытые помещения без внутренних источников тепла и влаги (неотапливаемые помещения);

-открытая атмосфера.

1.2 Основы теории коррозии

Любой коррозионный процесс является многостадийным.

Подвод коррозионной среды или отдельных ее компонентов к поверхности металла.

Взаимодействие среды с металлом.

Полный или частичный отвод продуктов от поверхности металла (в объем жидкости, если среда жидкая) [1, с.3].

Большинство металлов (кроме золота, серебра, платины, меди) встречаются в природе в ионном состоянии: оксиды, сульфиды, карбонаты и так далее и называются обычно рудами. Ионное состояние более выгодно, оно характеризуется меньшей внутренней энергией. Это заметно при получении металлов из руд и их коррозии. Поглощенная энергия при восстановлении металла из соединений свидетельствует о том, что свободный металл обладает более высокой энергией, чем металлическое соединение. Это приводит к тому, что металл, находящийся в контакте с коррозионно-активной средой стремится перейти в энергетически выгодное состояние с меньшим запасом энергии. Первопричиной коррозии металла является термодинамическая неустойчивость металлов в заданной среде [1 с. 8].

1.3 Классификация коррозионных процессов

По типу разрушений коррозия бывает сплошной и местной.

При равномерном распределении коррозионных разрушений по всей поверхности металла коррозию называют равномерной или сплошной. Она не представляет собой опасности для конструкций и аппаратов, особенно в тех случаях, когда потери металлов не превышают технически обоснованных норм. Её последствия могут быть сравнительно легко учтены.

Если же значительная часть поверхности металла свободна от коррозии и последняя сосредоточена на отдельных участках, то ее называют местной. Она гораздо опаснее, хотя потери металла могут быть и небольшими. Её опасность состоит в том, что, снижая прочность отдельных участков, она резко уменьшает надёжность конструкций, сооружений, аппаратов. Местной коррозии благоприятствуют морская вода, растворы солей, в частности галогенидных: хлорид натрия, кальция, магния. Особенно большие неприятности связаны с хлоридом натрия, который разбрасывают в зимнее время на дорогах и тротуарах для удаления снега и льда. В присутствии солей они плавятся, и образующиеся растворы стекают в канализационные трубы. Соли являются активаторами коррозии и приводят к ускоренному разрушению металлов, в частности транспортных средств и подземных коммуникаций. Подсчитано, что в США применение для этой цели солей приводит к потерям на сумму 2 млрд. долларов в год в связи с коррозией двигателей и 0,5 млрд. на дополнительный ремонт дорог, подземных магистралей и мостов. Причина же использования хлорида натрия заключается в его дешевизне. В настоящее время выход лишь один – вовремя убирать снег и вывозить его на свалки. Экономически он белее чем оправдан [2 с. 10].

Язвенная (в виде пятен различной величины), точечная, щелевая, контактная, межкристаллическая коррозия - наиболее часто встречающиеся в практике типы местной коррозии. Точечная - одна из наиболее опасных. Она заключается в образовании сквозных поражений, то есть точечных полостей – питтингов.

Коррозионное растрескивание возникает при одновременном воздействии на металл агрессивной среды и механических напряжений. В металле появляются трещины транскристаллитного характера, которые часто приводят к полному разрушению изделий.

По механизму коррозионного процесса различают два основных типа коррозии: химическую и электрохимическую. Строго отделить один вид от другого трудно, а иногда и невозможно.

Подхимической коррозией подразумевают взаимодействие металлической поверхности с окружающей средой, не сопровождающееся возникновением электрохимических (электродных) процессов на границе фаз. Она основана на реакции между металлом и агрессивным реагентом. Этот вид коррозии протекает в основном равномерно по всей поверхности металла. В связи с этим химическая коррозия менее опасна, чем электрохимическая.

Примером химической коррозии служат ржавление железа и покрытие патиной бронзы. В промышленном производстве металлы нередко нагреваются до высоких температур. В таких условиях химическая коррозия ускоряется. Многие знают, что на прокатке раскаленных кусков металла образуется окалина. Это типичный продукт химической коррозии.

Установлено, что коррозии железа способствует наличие в нём серы. Античные предметы, изготовленные из железа, устойчивы к коррозии именно благодаря низкому содержанию в этом железе серы. Сера в железе обычно содержится в виде сульфидов FeS и других. В процессе коррозии сульфиды разлагаются с выделением сероводорода H2S, который является катализатором коррозии железа.

Механизм химической коррозии сводится к реактивной диффузии атомов или ионов металла сквозь постепенно утолщающуюся пленку продуктов коррозии (например, окалины) и встречной диффузии атомов или ионов кислорода. По современным воззрениям этот процесс имеет ионно-электронный механизм, аналогичный процессам электропроводности в ионных кристаллах.

Особенно разнообразные процессы химической коррозии встречаются в различных производствах. В атмосфере водорода, метана и других углеводородов, оксида углерода (II), сероводорода, хлора, в среде кислот, а также в расплавах солей и других веществ протекают специфические реакции с вовлечением материала аппаратов и агрегатов, в которых осуществляется химический процесс. Задача специалистов при конструировании реактора – подобрать металл или сплав, который был бы наиболее устойчив к компонентам химического процесса [3 с. 25].

Практически наиболее важным видом химической коррозии является взаимодействие металла при высоких температурах с кислородом и другими газообразными активными средами (HS, SO , галогены, водяные пары, CO). Подобные процессы химической коррозии металлов при повышенных температурах носят также название газовой коррозии. Многие ответственные детали инженерных конструкций сильно разрушаются от газовой коррозии (лопатки газовых турбин, сопла ракетных двигателей, элементы электронагревателей, колосники, арматура печей). Большие потери от газовой коррозии (угар металла) несет металлургическая промышленность. Стойкость против газовой коррозии повышается при введении в состав сплава различных добавок (хрома, алюминия, кремния). Добавки алюминия, бериллия и магния к меди повышают ее сопротивление газовой коррозии в окислительных средах. Для защиты железных и стальных изделий от газовой коррозии поверхность изделия покрывают алюминием (алитирование).

Под электрохимической коррозией подразумевают процесс взаимодействия металлов с электролитами в виде водных растворов, реже с неводными электролитами, например, с некоторыми органическими электропроводными соединениями или безводными расплавами солей при повышенных температурах [4 с. 18].

Рассмотрим схему этого процесса. Сложность его заключается в том, что на одной и той же поверхности происходят одновременно два процесса, противоположные по своему химическому смыслу: окисление металла и восстановление окислителя. Оба процесса должны протекать сопряженно, чтобы сохранялось равенство числа электронов, отдаваемых металлом и присоединяющихся к окислителю в единицу времени. Только в этом случае может наступить стационарное состояние. По такому принципу протекают, например, взаимодействие металла с кислотами:

Zn + 2HCl  Zn2+ +2Cl +H2

Эта суммарная реакция состоит из двух актов:

Zn  Zn2+ + 2e

2H+ + 2e  H2

Электрохимическая коррозия часто связана с наличием в металле случайных примесей или специально введенных легирующих добавок.

Многие химики в своё время были озадачены тем, что иногда реакция

Zn + H2SO4 = ZnSO4 + H2

не протекает. Было выяснено, что в такой ситуации в раствор нужно добавить немного сульфата меди (II) (медного купороса). В этом случае на поверхности цинка выделится медь^

CaSO4 + Zn = ZnSO4 + Cu

и водород начнёт бурно выделяться. При объяснении данного явления в 1830 году швейцарским химиком А. Деля Ривом была создана первая электрохимическая теория коррозии.

В 1800 году, вскоре после открытия итальянцем Л. Гальвани электрохимического явления, его соотечественник А. Вольта сконструировал источник электрического тока – гальванический элемент, что открыло человечеству эру электричества. В одном из вариантов источник состоял из чередующихся медных и цинковых дисков, разделенных пористым материалом и пропитанных раствором соли. В зависимости от числа дисков получается ток различной силы. При осаждении на поверхности цинка металлической меди получается короткозамкнутый элемент. В нём цинк является анодом, а медь – катодом. Поскольку медь находится в контакте с цинком и оба эти металла окружены раствором электролита, гальванический элемент является «включенным». Цинк в виде иона Zn2+ переходит в раствор серной кислоты, а оставшиеся от каждого атома два электрона перетекают на более электроположительный металл – медь:

Zn = Zn2+ + 2e

К медному аноду подходят ионы водорода, принимают электроны и превращаются в атомы водорода, а затем и в молекулы водорода:

(Cu) H+ + e  H

2H = H2

Таким образом, потоки движения ионов разделены и при избытке кислоты процесс протекает до тех пор, пока не растворится весь цинк.

Итак, процессы электрохимической коррозии протекают по законам электрохимической кинетики, когда общая реакция взаимодействия может быть разделена на следующие, в значительной степени самостоятельные, электродные процессы:

-анодный процесс – переход металла в раствор в виде ионов (в водных растворах, обычно гидратированных) с оставлением эквивалентного количества электронов в металле;

-катодный процесс – ассимиляция появившихся в металле избыточных электронов деполяризаторами.

Различают коррозию с водородной, кислородной или окислительной деполяризацией. При наличии в растворе газообразного кислорода и невозможностью протекания процесса коррозии с водородной деполяризацией основную роль деполяризатора исполняет кислород. Коррозионные процессы, у которых катодная деполяризация осуществляется растворенным в электролите кислородом, называют процессами коррозии металлов с кислородной деполяризацией. Это наиболее распространенный тип коррозии металла в воде, в нейтральных и даже в слабокислых солевых растворах, в морской воде, в земле, в атмосфере воздуха.

Общая схема кислородной деполяризации сводится к восстановлению молекулярного кислорода до иона гидрокисла:

O2 + 4e +2H2O  4OH

Коррозия металла с кислородной деполяризацией в большинстве практических случаев происходит в электролитах, соприкасающихся с атмосферой, парциальное давление кислорода в которой равно 0,21 атм.

Каждый процесс с кислородной деполяризацией включает следующие последовательные стадии:

-растворение кислорода в электролите;

-транспортировка растворенного кислорода в растворе электролита (за счет диффузии или перемешивания);

-перенос кислорода в результате движения электролита;

-перенос кислорода в диффузионном слое электролита или в пленке продуктов коррозии металла к катодным участкам поверхности;

-ионизация кислорода;

В реальных условиях коррозии металла наиболее затрудненными стадиями процесса являются:

-реакция ионизации кислорода на катоде. Возникающую при этом поляризацию называют перенапряжением кислорода. Говорят, что процесс идет с кинетическим контролем.

-диффузия кислорода к катоду, либо перенапряжение диффузии. В этом случае, говорят, что процесс идет с диффузионным контролем.

Возможны случаи, когда обе стадии – ионизация кислорода и диффузия кислорода оказывают влияние на процесс. Тогда говорят, о кинетически-диффузионном контроле.

Сущность первой электрохимической теории состояла в том, что примеси в металлах создают микрогальванические элементы, в которых происходит перетекание электронов от анодных участков к катодным. Поскольку катодный и анодный процессы разделены на поверхности, то разделены и противоположные потоки ионов, атомов и молекул. Разделенные потоки не мешают друг другу, и по этой причине процесс коррозии протекает быстрее, чем в случае микрогальванических элементов [4 с. 21].

Конечно, в настоящее время теории электрохимической коррозии выглядят гораздо более совершенными. Они основаны на многочисленных экспериментальных фактах и выражены в математической форме.

Различают следующие типы электрохимической коррозии, имеющие наиболее важное практическое значение.

1. Коррозия в электролитах. К этому типу относятся коррозия в природных водах (морской и пресной), а также различные виды коррозии в жидких средах. В зависимости от характера среды различают:

а) кислотную;

б) щелочную;

в) солевую;

г) морскую коррозию.

По условиям воздействия жидкой среды на металл этот тип коррозии также характеризуется как:

-коррозия при полном погружении;

-при неполном погружении;

-при переменном погружении.

Каждый из этих подтипов имеет свои характерные особенности.

2. Почвенная (грунтовая, подземная) коррозия - воздействие на металл грунта, который в коррозионном отношении должен рассматриваться как своеобразный электролит. Характерной особенностью подземной электрохимической коррозии является большое различие в скорости доставки кислорода (основной деполяризатор) к поверхности подземных конструкций в разных почвах (в десятки тысяч раз). Значительную роль при коррозии в почве играет образование и функционирование макрокоррозионных пар вследствие неравномерной аэрации отдельных участков конструкции, а также наличие в земле блуждающих токов. В ряде случаев на скорость электрохимической коррозии в подземных условиях оказывает существенное влияние также развитие биологических процессов в почве.

3. Атмосферная коррозия - коррозия металлов в условиях атмосферы, а также любого влажного газа; наблюдается под конденсационными видимыми слоями влаги на поверхности металла (мокрая атмосферная коррозия) или под тончайшими невидимыми адсорбционными слоями влаги (влажная атмосферная коррозия). Особенностью атмосферной коррозии является сильная зависимость ее скорости и механизма от толщины слоя влаги на поверхности металла или степени увлажнения образовавшихся продуктов коррозии.

4. Коррозия в условиях механического воздействия. Этому типу разрушения подвергаются многочисленные инженерные сооружения, работающие как в жидких электролитах, так и в атмосферных и подземных условиях. Наиболее типичными видами подобного разрушения являются:

-коррозионное растрескивание; при этом характерно образование трещин, которые могут распространяться не только межкристально, но также и транскристально. Примером подобного разрушения является щелочная хрупкость котлов, сезонное растрескивание латуней, а также растрескивание некоторых конструкционных высокопрочных сплавов.

-коррозионная усталость, вызываемая воздействием коррозионной среды и знакопеременных или пульсирующих механических напряжений. Этот вид разрушения также характеризуется образованием меж- и транскристаллитных трещин. Разрушения металлов от коррозионной усталости встречаются при эксплуатации различных инженерных конструкций (валов гребных винтов, рессор автомобилей, канатов, штанг глубинных насосов, охлаждаемых валков прокатных станов и др.)

-коррозионная кавитация, являющаяся обычно следствием энергичного механического воздействия коррозионной среды на поверхность металла. Подобное коррозионно-механическое воздействие может приводить к весьма сильным местным разрушениям металлических конструкций (например, для гребных винтов морских судов). Механизм разрушения от коррозионной кавитации близок к разрушению от поверхностной коррозионной усталости.

-коррозионная эрозия, вызываемая механическим истирающим воздействием другого твердого тела при наличии коррозионной среды или непосредственным истирающим действием самой коррозионной среды. Это явление иногда называют также коррозионным истиранием или фреттинг-коррозией.

2. МЕТОДЫ ЗАЩИТЫ ОТ КОРРОЗИИ

Проблема защиты металлов от коррозии возникла почти в самом начале их использования. Люди пытались защитить металлы от атмосферного воздействия с помощью жира, масел, а позднее и покрытием другими металлами и, прежде всего, легкоплавким оловом. В трудах древнегреческого историка Геродота (V век до нашей эры) уже имеется упоминание о применении олова для защиты железа от коррозии [5 с. 8].

Задачей химиков было и остается выяснение сущности явлений коррозии, разработка мер, препятствующих или замедляющих её протекание. Коррозия металлов осуществляется в соответствии с законами природы и поэтому ее нельзя полностью устранить, а можно лишь замедлить.

В зависимости от характера коррозии и условий ее протекания применяются различные методы защиты. Выбор того или иного способа определяется его эффективностью в данном конкретном случае, а также экономической целесообразностью.

2.1 Легирование

Имеется способ уменьшения коррозии металлов, который строго нельзя отнести к защите. Этим способом является получение сплавов, которое называется легирование. В настоящее время создано большое число нержавеющих сталей путем присадок к железу никеля, хрома, кобальта и др. Такие стали, действительно, не покрываются ржавчиной, но их поверхностная коррозия имеет место, хотя и с малой скоростью. Оказалось, что при использовании легирующих добавок коррозионная стойкость меняется скачкообразно. Установлено правило, названное правилом Таммана, согласно которому резкое повышение устойчивости к коррозии железа наблюдается при введении легирующей добавки в количестве 1/8 атомной доли, то есть один атом легирующей добавки приходится на восемь атомов железа. Считается, что при таком соотношении атомов происходит их упорядоченное расположение в кристаллической решетке твердого раствора, что и затрудняет коррозию.

2.2 Защитные пленки

Одним из наиболее распространенных способов защиты металлов от коррозии является нанесение на их поверхность защитных пленок: лака, краски, эмали, других металлов. Лакокрасочные покрытия наиболее доступны для широкого круга людей. Лаки и краски обладают низкой газо- и паропроницаемостью, водоотталкивающими свойствами, поэтому они препятствуют доступу к поверхности металла воды, кислорода и содержащихся в атмосфере агрессивных компонентов. Покрытие поверхности металла лакокрасочным слоем не исключает коррозию, а служит для нее лишь преградой, а значит, лишь тормозит процесс коррозии. Именно поэтому важное значение имеет качество покрытия – толщина слоя, пористость, равномерность, проницаемость, способность набухать в воде, прочность сцепления (адгезия). Качество покрытия зависит от тщательности подготовки поверхности и способа нанесения защитного слоя. Окалина и ржавчина должны быть удалены с поверхности покрываемого металла. В противном случае они будут препятствовать хорошей адгезии покрытия с поверхностью металла. Низкое качество покрытия нередко связано с повышенной пористостью. Часто она возникает в процессе формирования защитного слоя в результате испарения растворителя и удаления продуктов отверждения и деструкции (при старении пленки). Поэтому обычно рекомендуют наносить не один толстый слой, а несколько тонких слоев покрытия. Во многих случаях увеличение толщины покрытия приводит к ослаблению адгезии защитного слоя с металлом. Большой вред наносят воздушные полости, пузыри. Они образуются при низком качестве выполнения операции нанесения покрытия.

Для снижения смачиваемости водой лакокрасочные покрытия иногда, в свою очередь, защищают восковыми составами или кремнийорганическими соединениями. Лаки и краски наиболее эффективны для защиты от атмосферной коррозии. В большинстве случаев они непригодны для защиты подземных сооружений и конструкций, так как трудно предупредить механические повреждения защитных слоев при контакте с грунтом. Опыт показывает, что срок службы лакокрасочных покрытий в этих условиях невелик. Намного практичнее оказалось применять толстослойные покрытия из каменноугольной смолы (битума).

В некоторых случаях пигменты красок выполняют также роль ингибиторов коррозии (об ингибиторах будет сказано далее). К числу таких пигментов относятся хроматы стронция, свинца и цинка (SrCrO4, PbCrO4, ZnCrO4).

2.3 Грунтовки и фосфатирование

Часто под лакокрасочный слой наносят грунтовки. Пигменты, входящие в ее состав, также должны обладать ингибиторными свойствами. Проходя через слой грунтовки, вода растворяет некоторое количество пигмента и становится менее коррозионноактивной. Среди пигментов, рекомендуемых для грунтов, наиболее эффективным признан свинцовый сурик Pb3O4.

Вместо грунтовки иногда проводят фосфатирование поверхности металла. Для этого на чистую поверхность кистью или распылителем наносят растворы ортофосфатов железа (III), марганца (II) или цинка (II), содержащих и саму ортофосфорную кислоту H3PO4. В заводских условиях фосфатирование ведут при 99-970 С в течение 30-90 минут. В образование фосфатного покрытия вносят вклад металл, растворяющийся в фосфатирующейся смеси, и оставшиеся на его поверхности оксиды.

Для фосфатирования поверхности стальных изделий разработано несколько различных препаратов. Большинство из них состоят из смеси фосфатов марганца и железа. Возможно, наиболее распространенным препаратом является «мажеф» – смесь дигидрофосфатов марганца Mn (H2PO4)2, железа Fe (H2PO4)2 и свободной фосфорной кислоты. Название препарата состоит из первых букв компонентов смеси. По внешнему виду мажеф – это мелкокристаллический порошок белого цвета с соотношением между марганцем и железом от 10:1 до 15:1. Он состоит из 46–52 % P2O5; не менее 14 % Mn; 0,3–3 % Fe. При фосфатировании мажефом стальное изделие помещается в его раствор, нагретый примерно до ста градусов. В растворе происходит растворение с поверхности железа с выделением водорода, а на поверхности образуется плотный, прочный и малорастворимый в воде защитный слой фосфатов марганца и железа серо-черного цвета. При достижении толщины слоя определенной величины дальнейшее растворение железа прекращается. Пленка фосфатов защищает поверхность изделия от атмосферных осадков, но мало эффективна от растворов солей и даже слабых растворов кислот. Таким образом, фосфатная пленка может служить лишь грунтом для последовательного нанесения органических защитных и декоративных покрытий – лаков, красок, смол. Процесс фосфатирования длится 40–60 минут. Для его ускорения в раствор вводят 50–70 г/л нитрата цинка. В этом случае время сокращается в 10–12 раз.

2.4 Электрохимическая защита

В производственных условиях используют также электрохимический способ – обработку изделий переменным током в растворе фосфата цинка при плотности тока 4 А/дм2 и напряжении 20 В и при температуре 60–700 С. Фосфатные покрытия представляют собой сетку плотносцепленных с поверхностью фосфатов металлов. Сами по себе фосфатные покрытия не обеспечивают надежной коррозионной защиты. Преимущественно их используют как основу под окраску, обеспечивающую хорошее сцепление краски с металлом. Кроме того, фосфатный слой уменьшает коррозионные разрушения при образовании царапин или других дефектов.

2.5 Силикатные покрытия

Для защиты металлов от коррозии используют стекловидные и фарфоровые эмали, коэффициент теплового расширения которых должен быть близок к таковому для покрываемых металлов. Эмалирование осуществляют нанесением на поверхность изделий водной суспензии или сухим напудриванием. Вначале на очищенную поверхность наносят грунтовочный слой и обжигают его в печи. Далее наносят слой покровной эмали и обжиг повторяют. Наиболее распространены стекловидные эмали – прозрачные или загашенные. Их компонентами являются SiO2 (основная масса), B2O3, Na2O, PbO. Кроме того, вводят вспомогательные материалы: окислители органических примесей, оксиды, способствующие сцеплению эмали с эмалируемой поверхностью, глушители, красители. Эмалирующий материал получают сплавлением исходных компонентов, измельчением в порошок и добавлением 6–10 % глины. Эмалевые покрытия в основном наносят на сталь, а также на чугун, медь, латунь и алюминий [7, c. 24].

Эмали обладают высокими защитными свойствами, которые обусловлены их непроницаемостью для воды и воздуха (газов) даже при длительном контакте. Их важным качеством является высокая стойкость при повышенных температурах. К основным недостаткам эмалевых покрытий относят чувствительность к механическим и термическим ударам. При длительной эксплуатации на поверхности эмалевых покрытий может появиться сетка трещин, которая обеспечивает доступ влаги и воздуха к металлу, вследствие чего и начинается коррозия.

2.6 Цементные покрытия

Для защиты чугунных и стальных водяных труб от коррозии используют цементные покрытия. Поскольку коэффициенты теплового расширения портландцемента и стали близки, то он довольно широко применяется для этих целей. Недостаток портландцементных покрытий тот же, что и эмалевых, – высокая чувствительность к механическим ударам.

2.7 Покрытие металлами

Широко распространенным способом защиты металлов от коррозии является покрытие их слоем других металлов. Покрывающие металлы сами корродируют с малой скоростью, так как покрываются плотной оксидной пленкой. Покрывающий слой наносят различными методами:

-горячее покрытие – кратковременное погружение в ванну с расплавленным металлом;

-гальваническое покрытие – электроосаждение из водных растворов электролитов;

-металлизация – напыление;

-диффузионное покрытие – обработка порошками при повышенной температуре в специальном барабане;

-с помощью газофазной реакции, например:

3CrCl2 + 2Fe 1000 °C 2FeCl3 + 3Cr (в расплаве с железом)

Имеются и другие методы нанесения металлических покрытий.

Например, разновидностью диффузионного способа является погружение изделий в расплав хлорида кальция, в котором растворены наносимые металлы.

В производстве широко используется химическое нанесение металлических покрытий на изделия. Процесс химического металлирования является каталитическим или автокаталитическим, а катализатором является поверхность изделия. Используемый раствор содержит соединение наносимого металла и восстановитель. Поскольку катализатором является поверхность изделия, выделение металла и происходит именно на ней, а не в объеме раствора. В настоящее время разработаны методы химического покрытия металлических изделий никелем, кобальтом, железом, палладием, платиной, медью, золотом, серебром, родием, рутением и некоторыми сплавами на основе этих металлов. В качестве восстановителей используют гипофосфит и боргидрид натрия, формальдегид, гидразин. Естественно, что химическим никелированием можно наносить защитное покрытие не на любой металл.

Металлические покрытия делят на две группы:

- коррозионностойкие;

- протекторные.

Например, для покрытия сплавов на основе железа в первую группу входят никель, серебро, медь, свинец, хром. Они более электроположительны по отношению к железу, то есть в электрохимическом ряду напряжений металлов стоят правее железа. Во вторую группу входят цинк, кадмий, алюминий. Они более электроотрицательны по отношению к железу.

В повседневной жизни человек чаще всего встречается с покрытиями железа цинком и оловом. Листовое железо, покрытое цинком, называют оцинкованным железом, а покрытое оловом – белой жестью. Первое в больших количествах идет на кровли домов, а второе – на изготовление консервных банок. Впервые способ хранения пищевых продуктов в жестяных банках предложил повар Н.Ф. Аппер в 1810 году. И то, и другое железо получают, главным образом, протягиванием листа железа через расплав соответствующего металла.

Металлические покрытия защищают железо от коррозии при сохранении сплошности. При нарушении же покрывающего слоя коррозия изделия протекает даже более интенсивно, чем без покрытия. Это объясняется работой гальванического элемента железо–металл. Трещины и царапины заполняются влагой, в результате чего образуются растворы, ионные процессы в которых облегчают протекание электрохимического процесса (коррозии).

2.8 Ингибиторы

Применение ингибиторов – один из самых эффективных способов борьбы с коррозией металлов в различных агрессивных средах. Ингибиторы – это вещества, способные в малых количествах замедлять протекание химических процессов или останавливать их. Название ингибитор происходит от латинского inhibere, что означает сдерживать, останавливать. Ещё по данным 1980 года, число известных науке ингибиторов составило более пяти тысяч. Ингибиторы дают народному хозяйству немалую экономию.

Ингибирующее воздействие на металлы, прежде всего на сталь, оказывает целый ряд неорганических и органических веществ, которые часто добавляются в среду, вызывающую коррозию. Ингибиторы имеют свойство создавать на поверхности металла очень тонкую пленку, защищающую металл от коррозии.

Ингибиторы в соответствии с Х. Фишером можно сгруппировать следующим образом.

1) Экранирующие, то есть покрывающие поверхность металла тонкой пленкой. Пленка образуется в результате поверхностной адсорбции. При воздействии физических ингибиторов химических реакций не происходит.

2) Окислители (пассиваторы) типа хроматов, вызывающие образование на поверхности металла плотно прилегающего защитного слоя окисей, которые замедляют протекание анодного процесса. Эти слои не очень стойки и при определенных условиях могут подвергаться восстановлению. Эффективность пассиваторов зависит от толщины образующегося защитного слоя и его проводимости.

3) Катодные – повышающие перенапряжение катодного процесса. Они замедляют коррозию в растворах неокисляющих кислот. К таким ингибиторам относятся соли или окислы мышьяка и висмута.

Эффективность действия ингибиторов зависит в основном от условий среды, поэтому универсальных ингибиторов нет. Для их выбора требуется проведение исследований и испытаний.

Наиболее часто применяются следующие ингибиторы: нитрит натрия, добавляемый, например, к холодильным соляным растворам, фосфаты и силикаты натрия, бихромат натрия, различные органические амины, сульфоксид бензила, крахмал, танин и т. п. Поскольку ингибиторы со временем расходуются, они должны добавляться в агрессивную среду периодически. Количество ингибитора, добавляемого в агрессивные среды, невелико. Например, нитрита натрия добавляют в воду в количестве 0,01–0,05 %.

Ингибиторы подбираются в зависимости от кислого или щелочного характера среды. Например, часто применяемый в качестве ингибитора нитрит натрия может использоваться в основном в щелочной среде и перестает быть эффективным даже в слабокислых средах.

Применение противокоррозионных защитных покрытий.

Для защиты оборудования и строительных конструкций от коррозии в отечественной и зарубежной противокоррозионной технике применяется большой ассортимент различных химически стойких материалов – листовые и пленочные полимерные материалы, бипластмассы, стеклопластики, углеграфитовые, керамические и другие неметаллические химически стойкие материалы.

В настоящее время расширяется применение полимерных материалов, благодаря их ценным физико-химическим показателям, меньшему удельному весу и др.

Большой интерес для применения в противокоррозионной технике представляет новый химически стойкий материал – шлакоситалл.

Значительные запасы и дешевизна исходного сырья – металлургических шлаков – обусловливают экономическую эффективность производства и применения шлакоситалла [8, с. 10].

Шлакоситалл по физико-механическим показателям и химической стойкости не уступает основным кислотоупорным материалам (керамике, каменному литью), широко применяемым в противокоррозионной технике.

Среди многочисленных полимерных материалов, применяемых за рубежом в противокоррозионной технике, значительное место занимают конструкционные пластмассы, а также стеклопластики, получаемые на основе различных синтетических смол и стекловолокнистых наполнителей.

В настоящее время химическая промышленность выпускает значительный ассортимент материалов, обладающих высокой стойкостью к действию различных агрессивных сред. Особое место среди этих материалов занимает полиэтилен. Он инертен во многих кислотах, щелочах и растворителях, теплостоек до температуры + 7000 °С и так далее.

Другими направлениями использования полиэтилена в качестве химически стойкого материала являются порошкообразное напыление и дублирование полиэтилена стеклотканью. Широкое применение полиэтиленовых покрытий объясняется тем, что они, будучи одними из самых дешевых, образуют покрытия с хорошими защитными свойствами. Покрытия легко наносятся на поверхность различными способами, в том числе пневматическим и электростатическим распылением.

Также в противокоррозионной технике особого внимания заслуживают монолитные полы на основе синтетических смол. Высокая механическая прочность, химическая стойкость, декоративный вид - все эти положительные качества делают монолитные полы чрезвычайно перспективными.

Продукция лакокрасочной промышленности находит применение в различных отраслях промышленности и строительства в качестве химически стойких покрытий. Лакокрасочное пленочное покрытие, состоящее из последовательно наносимых на поверхность слоев грунтовки, эмали и лака, применяют для противокоррозионной защиты конструкций зданий и сооружений (ферм, ригелей, балок, колонн, стеновых панелей), а также наружных и внутренних поверхностей емкостного технологического оборудования, трубопроводов, газоходов, воздуховодов вентиляционных систем, которые в процессе эксплуатации не подвергаются механическим воздействиям твердых частиц, входящих в состав среды.

В последнее время большое внимание уделяется получению и применению комбинированных покрытий, поскольку в ряде случаев использование традиционных методов защиты является неэкономичным. В качестве комбинированных покрытий, как правило, используется цинковое покрытие с последующей окраской. При этом цинковое покрытие играет роль грунтовки.

Перспективно применение резин на основе бутилкаучука, которые отличаются от резин на других основах повышенной химической стойкостью в кислотах и щелочах, включая концентрированную азотную и серную кислоты. Высокая химическая стойкость резин на основе бутилкаучука позволяет более широко применять их при защите химической аппаратуры.

Данные способы находят широкое применение в промышленности в силу многих своих преимуществ – уменьшения потерь материалов, увеличения толщины покрытия, наносимого за один слой, уменьшения расхода растворителей, улучшение условий производства окрасочных работ и т.д.

3. СБЕРЕЖЕНИЕ СТРЕЛКОВОГО ОРУЖИЯ – ЗАЛОГ УСПЕХА В БОЮ

Основой надежной работы любого механизма, в том числе и стрелкового оружия, является своевременный и постоянный уход за ним. Опыт эксплуатации автоматического стрелкового оружия показывает, что его износ обусловлен следующими причинами: врезанием пули в нарезы при выстреле; истиранием нарезов при чистке; воздействием порохового нагара на хромовое покрытие и основной металл при выстреле; воздействием высокой температуры пороховых газов при выстреле.

По этим причинам отказы оружия составляют 50–60 % от общего числа отказов. Только за счет профилактических мероприятий интенсивность отказов стрелкового оружия можно снизить в два раза. Поэтому все оружие (и боевое, и учебное) в любых условиях обстановки должно содержаться в полной исправности и быть готовым к немедленному использованию, что достигается его своевременной и умелой чисткой и смазкой, правильным хранением и сбережением [8, с.38].

Всем военнослужащим необходимо твердо знать, как протекает процесс коррозии частей оружия, особенно канала ствола, под воздействием порохового нагара, которым эти части оружия покрываются после стрельбы.

Сталь, из которой сделана большая часть деталей стрелкового оружия, под влиянием внешней среды и от действия различных химических реагентов (веществ, которые вступают в химическую реакцию со сталью) разрушается. Это разрушение металла называется коррозией. Потери оружия от коррозии металлических его частей очень велики, особенно когда не принимаются меры защиты от коррозии. Современное стрелковое оружие представляет собой сложные агрегаты с точными механизмами, и оно работает безотказно в том случае, если все механизмы содержатся в чистоте, не имеют на своей поверхности ржавчины и если размеры деталей не выходят за пределы допусков. Но стоит только поржаветь какой-либо ответственной детали, работающей на трение, как нарушается работа всего механизма. При очистке же деталей от ржавчины на поверхности металла остаются следы (сыпь, раковины и т. п.), уничтожить которые невозможно, так как при шлифовке размеры детали изменяются, и она может прийти в негодность.

Для защиты металлических частей и деталей оружия от коррозии их покрывают оксидными пленками, смазками, иногда фосфатируют или красят. Это обеспечивает сохранность и службу оружия на определенный срок. Здесь нужно помнить, что отечественное стрелковое оружие разных годов выпуска очень сильно отличается по качеству изготовления. Так, защитные покрытия оружия, изготовленного во время Великой Отечественной войны, имели низкое качество. Это объясняется недостаточно хорошей отделкой поверхности деталей, несовершенством шлифовки и полировки их. Естественно, что после войны для сохранения такого оружия приходилось принимать дополнительные меры: заново оксидировать, перекрашивать, применять смазку повышенного качества, нанося ее особенно тщательно.

Чтобы сохранить оружие от коррозии, необходимо, кроме точного выполнения правил его сбережения и хранения, предписанных официальными руководствами и наставлениями по стрелковому делу, знать причины, вызывающие коррозию, учитывать условия эксплуатации и хранения, применять наилучший в данных условиях способ защиты.

3.1 Атмосферная коррозия

Коррозия стрелкового оружия происходит главным образом под воздействием внешних атмосферных факторов: влаги, воздуха, температуры и пр. На чистую и не ржавую поверхность стали сухой чистый воздух не действует разрушающе.

Влажный воздух на чистую полированную и шлифованную поверхность обычной углеродистой стали начинает действовать только тогда, когда из-за резкого изменения температуры на этой поверхности начинает конденсироваться влага. Как только металл «отпотевает», поверхность его начинает ржаветь. Этот вид коррозии называется влажной конденсационной коррозией. Именно от конденсационной коррозии больше всего страдает вооружение как при хранении, так и при эксплуатации.

Если на поверхности металла имеются старые продукты коррозии (ржавчина) или пыль, то эти вещества поглощают влагу из воздуха, и коррозия в этом случае может протекать без конденсации влаги. Этот вид коррозии, протекающий при относительной влажности воздуха в 60 - 70%, называется сухой атмосферной коррозией. Сухая атмосферная коррозия не приносит оружию большого вреда, поскольку она происходит только при отсутствии резких изменений температуры. На практике же температура воздуха, окружающего оружие, изменяется очень часто. «Отпотевание» происходит по утрам, когда на охладившемся за ночь металле выпадает роса. Конденсация влаги на оружии происходит и тогда, когда оно вносится в теплое помещение с холода, и в помещениях складов при их проветривании весной, и даже в герметически запаянных металлических коробках, хотя, конечно, в последнем случае количество ее очень невелико.

Атмосферные осадки (дождь, снег) тоже являются факторами, вызывающими коррозию. При испарении дождевой воды на поверхности металлических частей остается тончайшая пленка соли, и при последующем увлажнении ее получаются довольно концентрированные растворы, вызывающие сильную коррозию. Поэтому необходимо принимать все меры к тому, чтобы исключить всякую возможность испарения влаги на поверхности металлических частей оружия, защищать его различными покрытиями, смазками и периодически, особенно после стрельбы, тщательно чистить.

Коррозия каналов стволов.

Коррозия каналов стволов стрелкового оружия хорошо изучена, и известны радикальные способы ее предотвращения. Однако далеко не все знают причины коррозии каналов стволов и методы сохранения их от коррозии в течение всего времени службы оружия.

Разрушение хромового покрытия канала ствола: а- сетка разгара; б - сколы хрома; в - разгар

Ржавчина (коррозия) наблюдается в канале ствола в виде бурого налета (пятен) и обнаруживается при протирке канала ствола чистой ветошью.

Образование ржавчины сопровождается разрушением металла деталей, в результате чего они выходят из строя. Коррозию канала ствола вызывают продукты разложения капсюльного состава, содержащего бертолетову соль.

Наибольшее отрицательное действие оказывает хлористый калий (образующийся при разложении бертолетовой соли), который при высокой температуре, развиваемой порохом при горении, испаряется без разложения и, конденсируясь на сравнительно холодных стенках ствола, заполняет все трещинки, забивается под слой омеднения и пропитывает весь остальной твердый нагар.

Обладая большой гигроскопичностью, хлористый калий притягивает влагу из воздуха не только непосредственно, но и сквозь слой смазки, нанесенной на поверхность канала ствола, не вычищенного после стрельбы. Притянув влагу, хлористый калий растворяется в ней и образует сильно оржавляющий раствор (электролит), во всем схожий с раствором обычной поваренной соли.

Развитию коррозии способствует находящийся на поверхности канала нагар, который состоит из твердых продуктов - остатков от разложения капсюльного состава, от горения пороха (золы) и остатков от оболочек пуль. В нагаре, кроме хлористого калия, содержатся серно-кислый калий, томпак, свинец, железо, зола и олово. Если сделать несколько выстрелов гильзами с капсюлями без пороха и не вычистить канал ствола, то через короткое время (1 - 2 часа) вся поверхность канала, покрытая нагаром, поржавеет.

Коррозия в канале ствола после выстрела, особенно в условиях повышенной влажности (в тумане, во время дождя и при отпотевании ствола) начинает развиваться немедленно. Теплый ствол не может отпотеть, значит, он не может и заржаветь, если, конечно, вода не попала в него каким-либо другим путем (дождь). Холодный ствол отпотевает при внесении оружия в теплое помещение; поэтому оружие следует чистить по возможности на стрельбище, пока ствол еще теплый, удалив из него весь нагар или во всяком случае наиболее активную часть нагара.

Кратко можно сформулировать основные положения коррозии каналов стволов стрелкового оружия.

При выстреле в канале отлагаются остатки от сгоревшего пороха и капсюля вместе с остатками от оболочки пули. Горение пороха, будучи почти полным, дает нагар, не причиняющий вреда. При горении капсюльного состава, наоборот, образуются соли, такие как хлористый калий, сходный с обычной поваренной солью. Эта соль отлагается на поверхности во всех трещинках, порах и на гладких поверхностях канала ствола, затвора, поршня затворной рамы, газовой камеры. При этом соли сплавляются с остальными частичками рыхлого нагара, образуя трудно отдираемый нагар. Если сначала эти остатки не приносят вреда, то вскоре они начинают быстро притягивать влагу. Сталь ржавеет очень быстро, если она покрыта мокрой солью; эта соль не растворяется в масле; она очень слабо подвергается воздействию масла и каких-либо растворов, содержащих масло, и продолжает поглощать влагу и после того, как она подверглась действию масел. Таким образом, соли нагара притягивают воду из воздуха, поглощают ее, растворяются в ней и образуют растворы, вызывающие ржавление. Ржавление ствола, не вычищенного после стрельбы, начинается через 2 часа, как только нагар увлажнится. Подобные процессы происходят в нехромированном канале ствола.

При чистке, таким образом, необходимо:

а) растворить всю соль, находящуюся в канале ствола, в трещинах и на деталях, которые находились в контакте с пороховыми газами, посредством воды или растворов, содержащих воду;

б) протереть эти части насухо;

в) защитить эти очищенные поверхности пленкой смазки, масла или другим предохранительным составом (масло или маслосодержащие растворы не могут очистить канал ствола и газовые ходы от нагара, только вода или водные растворы могут это сделать).

Металлическая развертка для снятия порохового нагарасо стенок газоотводных отверстий в автомате АК-74.

Пороховой нагар в канале ствола наблюдается в виде темных полос. В канале ствола с нарезами нагар скапливается в углах нарезов и обнаруживается при протирании канала ствола чистой ветошью, омеднение обнаруживается в виде легкого медного налета (если после стрельбы оружие не подвергалось чистке раствором РЧС). Пороховой нагар и омеднение удаляют раствором РЧС.

Для снятия порохового нагара со стенок газоотводных отверстий могут использоваться специальные металлические развертки.

Наибольшее влияние на коррозию канала ствола оказывают соли, отложившиеся на всей поверхности канала, и меньшее - соли, отложившиеся в трещинах; опыт показал, что коррозия совершенно нового ствола после одного - двух выстрелов протекает примерно так же, как и ствола, из которого сделано много выстрелов.

Рассматривая вопрос коррозии каналов стволов стрелкового оружия, нельзя пройти мимо влияния на коррозию остатков от оболочки пуль, томпака или латуни. Оба эти сплава в коррозионном отношении действуют одинаково: в тех местах, где они покрывают канал ствола сплошным слоем, по краям полей нарезов и посредине нарезов коррозии почти не наблюдается (в новом стволе, не имеющем раковин), но зато в непосредственной близости от мест отложения цветных металлов коррозия развивается очень быстро, образуя глубокие раковины. Наиболее сильное ржавление развивается посредине полей и в углах нарезов. Постепенно ржавление проникает и под слой томпака, где образуются раковинки, которые при последующих выстрелах забиваются нагаром и томпаком, и ржавление прогрессирует в глубину.

Таким образом, томпак усиливает и направляет коррозию каналов стволов, но только в присутствии электролита - раствора хлористого калия, т. е. в невычищенном стволе. Вычищенный и смазанный канал не коррозирует даже при сравнительно большом отложении в нем томпака.

Поверхность каналов стволов современного стрелкового оружия с целью повышения их живучести покрывают слоем хрома - очень твердого и коррозионно устойчивого металла. Слой хрома в пулеметных стволах имеет толщину 25 микрон (0,025 мм) и не лишен трещинок, порист. В трещинки и в поры при выстреле забивается нагар, который поглощает влагу и засасывает ее под слой хрома. Поэтому под слоем хрома при плохой чистке или при хранении невычищенных стволов быстро развивается коррозия. Однако встречаются образцы стрелкового оружия с нехромированными стволами: карабины СКС изготовления до 1951 года; пистолеты Макарова и Стечкина изготовления до 1954 года; ручные противотанковые гранатометы РПГ-2.

При коррозии хромированных каналов стволов на поверхности как будто чистого (блестящего при просмотре на свет) канала ствола появляется мелкая сыпь в виде бугорков или песчинок. Если протереть такой канал чистой белой тряпочкой, то на ней будет заметен красноватый налет ржавчины. Бугорки, которые появляются со временем на поверхности плохо вычищенного канала хромированного ствола, представляют собой кристаллики ржавчины, которая как бы вылезла из-под слоя хрома в местах, где расположены трещинки или поры. Сцепление хрома с основным металлом ослабляется, и при последующей стрельбе хром может быть сколот пулей и пороховыми газами.

Сетка разгара хромового покрытия в виде пересекающихся трещинок, как правило, наблюдается в казенной части ствола, особенно у пулеметных стволов. Так, при стрельбе из пулемета ПКМ, ПКМТ сетка разгара появляется после 500 выстрелов.

При выстреле температура поверхности канала ствола достигает 1000 градусов по С, что приводит к расширению канала ствола. От выстрела к выстрелу происходит периодическое расширение канала ствола и возвращение его в первоначальное состояние. Это приводит к образованию сетки разгара и сколов хрома, которые наблюдаются главным образом у пульного входа, посредине нареза и у боковой грани на полях. Кроме того, происходит оплавление поверхностей стенок канала ствола в местах скола хрома. В связи с этим изменяется поверхность канала ствола и увеличивается прорыв пороховых газов между пулей и стенками канала ствола, что приводит к уменьшению начальной скорости и, как следствие, к увеличению разброса пуль. Для поддержания заданной живучести нельзя допускать перегрева ствола во время стрельбы.

Сколы хрома появляются в канале пулеметного ствола обычно после 1500 выстрелов и более, а разгар с казенной части наблюдается после 2500 выстрелов. Появление этих дефектов ствола зависит от соблюдения режима огня и конструкций оружия (калибра ствола и мощности патрона). Так, сетка разгара в стволе 14,5-мм пулемета КПВ (КПВТ) появляется после 200 - 300 выстрелов, а сколы хрома в виде раковин могут появляться после 400 - 500 выстрелов.

Указанные дефекты в пределах живучести ствола не оказывают влияния на эксплуатацию оружия, однако являются предпосылками для появления ржавчины и шелушения хрома. Такие дефекты, как раковины, следы ржавчины, сколы или шелушение хрома в канале ствола, допускаются при условии нормального боя оружия. Наличие указанных дефектов в патроннике допускается при условии энергичного извлечения стреляной гильзы выбрасывателем затвора.

Для того чтобы предотвратить коррозию хромированных каналов стволов, их необходимо чистить после стрельбы водным раствором соды. При промывке водой канала ствола растворяются все приплавленные к поверхности его соли, затем протиранием из канала ствола удаляется вода и смазкой предотвращается проникновение влаги под слой хрома через поры и трещинки.

Если не растворить приплавленного хлористого калия, он останется под смазкой, притянет влагу из воздуха, и под смазкой получится раствор хлористого калия, который будет втягиваться по трещинкам и порам под слой хрома и вызывать там сильную коррозию.

Количество нагара в стволе зависит от количества произведенных выстрелов и состояния канала ствола. При наличии незначительных сколов хрома количество нагара, оставшегося в стволе после одного и того же количества выстрелов, удваивается по сравнению с количеством нагара, оставшегося в стволе без поражений. Оставшийся в канале ствола неочищенный нагар, ржавчина, раковины делают поверхность канала ствола шероховатой, при движении по такому стволу пуля испытывает излишнее трение, не одинаковое с разных сторон. Пуля, вылетая из такого ствола, не выдерживает траектории, свойственной пуле, выпущенной из исправного, вычищенного ствола.

В результате увеличивается рассеивание и нарушается нормальный бой оружия.

Высокая температура пороховых газов оказывает негативное воздействие на критическое сечение (сопло) ствола ручного гранатомета РПГ-7. После определенного количества выстрелов на поверхности критического сечения (сопле) ствола появляются прожоги, вымоины металла - т.н. эрозионный износ. При исчерпании гарантийной живучести, заданной заводом-изготовителем, эрозионный износ достигает максимальной величины. Поэтому появившиеся после стрельбы прожоги и вымоины металла запрещается выводить, так как при этом происходит ускоренный износ ствола гранатомета.

3.2 Авиационная коррозия

Характер коррозионных поражений самолетов и вертолетов весьма различен и зависит от условий местности, где находятся аэродромы (сельский или промышленный район), на которых базируются машины; условий, в которых работают детали внутри конструкции; длительности эксплуатации; качества ухода за изделиями и др.

Наиболее часто коррозионные поражения возникают на обшивках машин, базирующихся на аэродромах, находящихся вблизи промышленных или приморских районов. Атмосфера в этих районах загрязнена промышленными газами (SО2; NО2; NH3; HCl), угольной пылью, частицами солей и др. Особенно подвержены коррозии заклепочные швы, места запиловок, головки стальных болтов, места металлизации и др. Коррозия на наружных поверхностях обшивок самолетов и вертолетов носит преимущественно точечный характер, в некоторых случаях она сопровождается и другими видами коррозии.

Коррозионные поражения наблюдаются также на внешних поверхностях обшивки, особенно из прессованных панелей (они не плакированы), на которые попадают выхлопные газы. Верхние поверхности обшивок самолетов и вертолетов находятся в лучших условиях, чем нижние. Это объясняется тем, что осевшая на них роса, влага после дождя или сконденсировавшаяся после посадки, улетучивается относительно быстро. Этому способствует температура воздуха, ветер. Нижние же - из-за незначительного расстояния от земли увлажнены практически постоянно за счет испарения влаги из почвы.

В коррозионном отношении внутренние поверхности самолетов и вертолетов и находящиеся внутри конструкций детали работают в более трудных условиях, чем наружные, что объясняется длительной задержкой влаги внутри машин. Влага попадает на внутренние поверхности в дождливую погоду или при промывке машин через имеющиеся неплотности в стыках обшивки, она также конденсируется из воздуха после посадки самолета вследствие резкого перепада температур.

В особенно неблагоприятных условиях находятся внутренние поверхности обшивки и детали внутреннего набора под полом пассажирских кабин.

Здесь длительно задерживается сконденсировавшаяся влага, она загрязняется и становится коррозионно-активной. Загрязнение воды под полом пассажирской кабины происходит чаще всего из-за недостаточной герметичности полов туалетов и неисправности коммуникации санузлов. Эти жидкости весьма агрессивны, особенно в отношении алюминиевых сплавов. Влага длительно задерживается также на нижних внутренних поверхностях в случае неудачного расположения или засорения дренажных отверстий для отвода воды, а также при отсутствии периодического проветривания и продувки подпольного пространства теплым воздухом.

Развитию коррозии в подпольной части пассажирских и грузовых кабин самолетов также способствуют зазоры и щели, образующиеся в местах соединения элементов жесткости (стрингеров, шпангоутов и др.) с внутренней поверхностью обшивки, где влага задерживается длительное время. Особенно интенсивно развивается коррозия в зазорах и щелях, образованных при контакте деталей из разнородных металлов, например из алюминиевых и магниевых сплавов, алюминиевых сплавов и стали и т.п. Из-за указанных и других причин в подпольном пространстве пассажирских кабин без надлежащей защиты может возникнуть значительная коррозия.

В трудных в коррозионном отношении условиях находятся ниши аккумуляторных батарей, что объясняется возможным попаданием (по различным причинам) на стенки и детали ниши весьма агрессивных рабочих жидкостей, применяемых в аккумуляторах (кислота, щелочь).

В жестких условиях работают самолеты и вертолеты сельскохозяйственной авиации. Применяемые ими для подкормки растений и борьбы с сорняками и сельскохозяйственными вредителями ядохимикаты весьма агрессивны. В процессе загрузки их в машины, а главным образом при распылении, они попадают на наружные и внутренние поверхности машин и при недостаточной или плохой защите, особенно в местах соединения обшивки с элементами жесткости (стрингеры, шпангоуты и др.), вызывают значительную коррозию.

Применение для нового поколения самолетов негорючей жидкости НГЖ-4 усложнило противокоррозионную защиту внутренней поверхности. Жидкость сама по себе не является коррозионно-активной, но очень агрессивна к большинству видов лакокрасочных покрытий. Последние, даже при кратковременном контакте с жидкостью, легко разрушаются и перестают нести защитные функции. Разрушение покрытия особенно опасно в щелях под внутренним набором, поскольку его восстановление в этих зонах практически невозможно. Наиболее распространенными методами предохранения металлов и сплавов от коррозии является создание на их поверхности защитных покрытий. По виду материалов, из которых состоят защитные покрытия, их можно разделить на следующие группы:

-металлические (гальванические),

-неорганические неметаллические (окисные, фосфатные и т.п.), органические (лакокрасочные).

Из всех видов защитных противокоррозионных покрытий наибольшее распространение получило применение лакокрасочных покрытий в сочетании с неорганическими. Применение лакокрасочных покрытий является наиболее доступным способом защиты металлических и неметаллических изделий от коррозии и разрушений. Они весьма выгодно отличаются от других защитных покрытий сравнительно низкой стоимостью и простотой технологии их получения.

Кроме защиты от коррозии металлических материалов и разрушения неметаллических, лакокрасочные покрытия придают летательным аппаратам красивый внешний вид, отражают солнечные лучи, что позволяет уменьшить нагрев пассажирских кабин при стоянке летательных аппаратов на аэродромах в летнее время года.

Покрытия также могут быть применены для повышения видимости машин в туманную погоду и сумерки и выполнять ряд других функций.

3.3 Корабельная коррозия

Боевые корабли как в период эксплуатации, так и при консервации подвергаются коррозии, возникающей в результате воздействия окружающей среды. Различают два основных вида коррозии металлов: химическую и электрохимическую.

Х и м и ч е с к а я к о р р о з и я появляется при взаимодействии металла с кислородом, сернистым газом, хлором, фтором, находящимися в окружающей среде, которая не проводит электрический ток. Химическая коррозия в чистом виде (в корабельной практике) встречается сравнительно редко.

Э л е к т р о х и м и ч е с к а я к о р р о з и я является результатом взаимодействия технического металла (включающего примеси металлов, отличающихся своей активностью от основного металла) с влажным воздухом, конденсационной влагой, морской соленой водой и другими электролитами (растворы солей, кислот, щелочей), в результате чего образуются местные электрические токи, т. е. создаются в огромном количестве постоянно действующие гальванические элементы, у которых наиболее активный металл (анод) разрушается. В корабельной практике причиной самопроизвольного разрушения металлов почти всегда является электрохимическая коррозия.

Частным видом электрохимической коррозии является э л е к т р и ч е с к а я к о р р о з и я, которая возникает в результате растворения металла (анода) в воде под действием наложенных электрических токов, образующихся вследствие утечки электричества из корабельной сети, при электросварочных работах на корабле и соседних кораблях, а также от возникновения блуждающих токов при работе электростанций, электропоездов, линий электропередач и других источников на берегу. В корабельных условиях электрокоррозия приносит большой вред, порой более значительный, чем электрохимическая и химическая коррозия. По характеру развития и распространения коррозия бывает: поверхностная (равномерная, точечная, язвенная), подповерхностная (вызывающая вспучивание и расслоение металла) и межкристаллитная (поражающая грани кристаллов металла).

Межкристаллитная коррозия наиболее опасна, так как, не нарушая внешнего вида конструкции, в определенных условиях нагрузки может вызвать внезапное и полное ее разрушение.

Существующие способы защиты от коррозии включают:

-м е х а н и ч е с к у ю защиту поверхности металла (т. е. создание механического барьера) от проникновения агрессивной среды, осуществляемую путем нанесения различных защитных пленок (лакокрасочных, металлических, масляно-жировых);

-х и м и ч е с к у ю защиту — создание плотных окисных пленок на поверхности металла (оксидирование, фосфатирование, ингибирование);

-э л е к т р о х и м и ч е с к у ю защиту — преднамеренное изменение направления хода электрохимической реакции (коррозии) в искусственно создаваемых условиях (анодные, катодные покрытия и протекторная защита);

-з а щ и т у , о т э л е к т р и ч е с к о й к о р р о з и и — борьба с наложенными токами, осуществляемая применением правильных схем электроснабжения кораблей, исключающих утечку электричества, устройством специальных заземлений, отводящих ток от подводной части корпуса, а также нанесением лакокрасочных материалов, пленки которых достаточно хорошо электроизолируют корпус корабля от воды.

Наиболее распространенным, простым и относительно дешевым способом защиты металла от коррозии в корабельных условиях является окраска корабля. Современная химия дает возможность изготовлять высококачественные лакокрасочные материалы, обеспечивающие наряду с механической химическую (фосфати- рующие грунты) и электрохимическую (протекторные грунты) защиту. Лакокрасочные материалы (по предъявляемым требованиям и свойствам входящих в их состав компонентов) различают:

- а н т и к о р р о з и о н н ы е , в о д о с т о й к и е — защищающие металл от коррозии в местах с высокой степенью влажности (ЭКЖС-40, ХС-78, грунты ВЛ-02, № 81,ФЛ-03Ж и др.);

-н е о б р а с т а ю щ и е — защищающие корпус корабля от обрастания (ХВ-53, ХС-79, ЯН-7А);

- а т м о с ф е р о с т о й к и е — защищающие надводный борт и надстройки от атмосферной коррозии (ПХВ-29, ПХВ-35, ХВ-124, ПФ-115, ХС-510 и др.);

- т е р м о с т о й к и е — защищающие от коррозии поверхности металла,нагревающиеся свыше 100°С, и др.

ЗАКЛЮЧЕНИЕ

Металлы составляют одну из основ цивилизации на планете Земля. Их широкое внедрение в промышленное строительство и транспорт произошло на рубеже XVIII–XIX. В это время появился первый чугунный мост, спущено на воду первое судно, корпус которого был изготовлен из стали, созданы первые железные дороги. Начало практического использования человеком железа относят к IX веку до нашей эры. Именно в этот период человечество перешло из бронзового века в век железный.

В XXI веке высокие темпы развития промышленности, интенсификация производственных процессов, повышение основных технологических параметров (температура, давление, концентрация реагирующих средств и др.) предъявляют высокие требования к надежной эксплуатации технологического оборудования и строительных конструкций. Особое место в комплексе мероприятий по обеспечению бесперебойной эксплуатации оборудования отводится надежной защите его от коррозии и применению в связи с этим высококачественных химически стойких материалов.

Необходимость осуществления мероприятий по защите от коррозии диктуется тем обстоятельством, что потери от коррозии приносят чрезвычайно большой ущерб. По имеющимся данным, около 10% ежегодной добычи металла расходуется на покрытие безвозвратных потерь вследствие коррозии и последующего распыления. Основной ущерб от коррозии металла связан не только с потерей больших количеств металла, но и с порчей или выходом из строя самих металлических конструкций, т.к. вследствие коррозии они теряют необходимую прочность, пластичность, герметичность, тепло- и электропроводность, отражательную способность и другие необходимые качества. К потерям, которые терпит народное хозяйство от коррозии, должны быть отнесены также громадные затраты на всякого рода защитные антикоррозионные мероприятия, ущерб от ухудшения качества выпускаемой продукции, выход из строя оборудования, аварий в производстве и так далее.

Защита от коррозии является одной из важнейших проблем, имеющей большое значение для народного хозяйства.

Коррозия является физико-химическим процессом, защита же от коррозии металлов – проблема химии в чистом виде.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Краткая химическая энциклопедия / под редакцией И.А. Кнунянца и др. – М.: Советская энциклопедия, 1961-1967, Т.2.

2. Советский энциклопедический словарь. – М.: Советская энциклопедия, 1983.

3. Андреев И.Н. Коррозия металлов и их защита. – Казань: Татарское книжное издательство, 1979.

4. Войтович В.А., Мокеева Л.Н. Биологическая коррозия. – М.: Знание, 1980, № 10.

5. Лукьянов П.М. Краткая история химической промышленности. – М.: Издательство АН СССР, 1959.

6. Теддер Дж., Нехватал А., Джубб А. Промышленная органическая химия. – М.: Мир, 1977.

7. Улиг Г.Г., Реви Р.У. Коррозия и борьба с ней. – Л.: Химия, 1989.

8. Никифоров В.М. Технология металлов и конструкционные материалы. – М.: Высшая школа, 1980.

28

Просмотров работы: 36687