ИСПОЛЬЗОВАНИЕ ДОСТИЖЕНИЙ ГЕНЕТИКИ В УВЕЛИЧЕНИИ РАСТЕНИЕВОДЧЕСКОЙ ПРОДУКЦИИ - Студенческий научный форум

VII Международная студенческая научная конференция Студенческий научный форум - 2015

ИСПОЛЬЗОВАНИЕ ДОСТИЖЕНИЙ ГЕНЕТИКИ В УВЕЛИЧЕНИИ РАСТЕНИЕВОДЧЕСКОЙ ПРОДУКЦИИ

Стебенькова С.Н. 1, Курасова Л.Г. 2
1ФГБОУ ВПО Саратовский ГАУ имени Н.И. Вавилова
2ФГБОУ ВПО «Саратовский ГАУ имени Н.И. Вавилова»
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Генетика — наука, изучающая наследственность и изменчивость организмов. Она возникла на рубеже XIX и XX вв. (Е. Аспиз "Энциклопедический словарь юного биолога")

Современная генетика — один из наиболее бурно развивающихся разделов биологии. Этому способствуют и новые, очень важные открытия в области цитологии, биохимии, биофизики, эмбриологии; это связано и с тем значением, которое имеет генетика для сельскохозяйственного производства и медицины.

Значение генетики для сельского хозяйства очень велико. В настоящее время эта тема весьма актуальна. На начало 21-го века в мире проживает около 5 млрд. человек. По прогнозам учёных к концу 21-го века население Земли может увеличиться до 10 миллиардов. Как прокормить такое количество людей качественной пищей, если и при 5 миллиардах в некоторых регионах население голодает? Впрочем, даже если бы такой проблемы не существовало, то человечество, для решения других своих проблем, стремилось бы внедрять в сельское хозяйство наиболее производительные биотехнологии.

Современной селекция направлена на устойчивость и повышение качества продукции, создание нового поколения сортовых ресурсов страны.

Селекция это одна из важнейших наук на сегодняшний день. Эта наука выходит на первый план среди многих естественных дисциплин.

С каждым годом методы селекции совершенствуются, вводятся такие понятия как: генная инженерия, хромосомная инженерия, клеточная инженерия. Традиционные методы заменяются более новыми, привычные технологии становятся более совершенными.

Генная инженерия является значимым и перспективным методам на сегодняшний день.

Пользуясь современными агрокультурами и агротехнологиями, обеспечить продовольствием такое количество населения будет просто невозможно. Следовательно, уже сейчас пора подумать о том, как с наименьшими потерями поднять урожайность сельхоз культур вдвое. Поскольку для обычной селекции срок в два десятилетия крайне мал, необходимо воспользоваться новыми перспективными методами селекции.

Бурное развитие новых методов исследований в генетике, расширение и углубление наших представлений о структуре и законах организации наследственного аппарата клетки обусловили создание и разработку принципиально новых методов.

Ранее генетическое разнообразие форм растений – исходного материала для селекции –экспериментально создавалось в селекции методами гибридизации, полиплоидии, мутагенеза и др. Теперь ученые могут достигать еще большего разнообразия благодаря манипулированию отдельными клетками живого организма, отдельными хромосомами и отдельными генами.

1. Селекция

1.1 Понятие о селекции

Селекция это - наука о методах создания сортов и гибридов сельскохозяйственных растений, пород животных, штаммов микроорганизмов. Также селекцией называют отрасль сельскохозяйственного производства, занимающуюся выведением сортов и гибридов различных культур, пород животных. Селекция разрабатывает способы воздействия на растения и животных с целью изменения их наследственных качеств в нужном для человека направлении. Селекция является одной из форм эволюции растительного и животного мира, которая подчиняется тем же законам, что и эволюция видов в природе, но естественный отбор здесь частично заменен искусственным отбором. (Биологический энциклопедический словарь, М., 1989;)

Теоретическая основа селекция - генетика и разрабатываемые ею закономерности наследственности и изменчивости организмов. Эволюционная теория Чарльза Дарвина, законы Грегори Менделя, учения о чистых линиях и мутациях позволили селекционерам разработать методы управления наследственностью растительных и животными организмов. Большую роль в селекционной практике играет гибридологический анализ. (Серебровский А.С., Селекция растений и животных, М., 1969)

Селекционный процесс разбивается на три отрасли: селекция в растениеводстве, селекция в животноводстве и селекция микроорганизмов.

1.2 Селекция в растениеводстве

Примитивная селекция растений возникла одновременно с земледелием. Начав возделывать растения, человек стал отбирать, сохранять и размножать лучшие из них. Многие культурные растения возделывались примерно за 10 тысяч лет до нашей эры. Селекционеры древности создали прекрасные сорта плодовых растений, винограда, многие сорта пшеницы, бахчевых культур. Но значительное влияние на развитие селекции растений оказала работа западноевропейских селекционеров-практиков 18 века, например, английских ученых Галлета, Ширефа, немецкого ученого Римпау. Они создали несколько сортов пшеницы, разработали способы выведения новых сортов. В 1774 под Парижем основана селекционная фирма “Вильморен”, селекционеры которой первыми стали оценивать отбираемые растения по потомству. Им удалось вывести сорта сахарной свёклы, которые содержали почти в 3 раза больше сахара, чем исходные. Эта работа доказала огромное влияние селекции на изменение природы растений в нужную человеку сторону. С развитием капитализма в конце 18 - начале 19 веков в Европе и Северной Америке возникают промышленные семенные фирмы и крупные селекционно-семеноводческие предприятия; зарождается промышленная селекция растений, на развитие которой большое влияние оказали достижения ботаники, микроскопической техники и мн. др.

И в России И.В. Мичурин начал работы по селекции плодовых культур. Успешно применив ряд новых оригинальных методов, он создал много сортов плодовых и ягодных культур. Большое значение для теории и практики селекции растений имели его работы по гибридизации географически отдаленных форм. В это же время в США Л. Бёрбанк путем тщательного проведения скрещиваний и совершенного отбора создал целый ряд новых сортов различных сельскохозяйственных культур. Некоторые из них относились к формам, ранее не встречавшимся в природе (бескосточковая слива, неколючие сорта ежевики).("Биология" - еженедельное приложение к газете "Первое сентября" (№21 1998)

В селекции растений особое значение имеют развитие научных основ отбора и гибридизации, методы создания исходного материала - полиплоидия, экспериментальный мутагенез, гаплоидия, клеточная селекция, хромосомная и генная инженерия, гибридизация протопластов, культура зародышевых и соматических клеток и тканей растений; изучение генетических и физиолого-биохимических основ иммунитета, наследование важнейших количественных и качественных признаков (белка и его аминокислотного состава, жиров, крахмала, сахаров). В современной селекции растений в качестве исходного материала используют естественные и гибридные популяции, самоопыленные линии, искусственные мутанты и полиплоидные формы. Большинство сортов сельскохозяйственных растений создано методом отбора и внутривидовой гибридизации. Получены мутантные и полиплоидные сорта зерновых, технических и кормовых культур. Успех гибридизации в значительной степени определяется правильным подбором для скрещивания исходных родительский пар, особенно по эколого-географическому принципу. При необходимости объединить в гибридном потомстве признаки нескольких родительских форм используют ступенчатую гибридизацию. Этот метод широко применяется во всем мире. Для усиления в гибридном потомстве желаемых свойств одного из родителей применяют возвратные скрещивания. Для сочетания в одном сорте признаков и свойств разных видов или родов растений применяют отдаленную гибридизацию.

1.3 Методы селекции

В селекции растений широко применяют гибридизацию и отбор — массовый (без учета генотипа) и индивидуальный. В растениеводстве по отношению к перекрестноопыляющимся растениям нередко применяется массовый отбор. При таком отборе в посеве сохраняют растения только с желательными качествами. При повторном посеве снова отбирают растения с определенными признаками. Индивидуальный отбор сводится к выделению отдельных особей и получению от них потомства. Индивидуальный отбор приводит к выделению чистой линии — группы генетически однородных (гомозиготных) организмов. Путем отбора были выведены многие ценные сорта культурных растений. Для внесения в генофонд создаваемого сорта растений или породы животных ценных генов и получения оптимальных комбинаций признаков применяют гибридизацию с последующим отбором. При скрещивании разных пород животных или сортов растений, а также при межвидовых скрещиваниях в первом поколении гибридов повышается жизнеспособность и наблюдается мощное развитие. Это явление получило название гибридной силы, или гетерозиса. Оно объясняется переходом многих генов в гетерозиготное состояние и взаимодействием благоприятных доминантных генов. При последующих скрещиваниях гибридов между собой гетерозис затухает вследствие расщепления гомозигот.

Используют также полиплоидию, благодаря которой выведены высокоурожайные полиплоидные сорта сахарной свеклы, хлопчатника, гречихи и др. Таким путем Г. Д. Карпеченко (1935) получил межвидовой капустно-редечный гибрид. Каждая из исходных форм имела в половых клетках по 9 хромосом. В этом случае клетки полученного от них гибрида имели 18 хромосом. Но некоторые яйцеклетки и пыльцевые зерна содержали все 18 хромосом (диплоиды), а при их скрещивании создано растение с 36 хромосомами, которое оказалось плодовитым. Так была доказана возможность использования полиплоида для преодоления нескрещиваемости и бесплодия при отдаленной гибридизации.

Один из приемов селекции — выведение чистых линий путем многократного принудительного самоопыления растений: потомство такого растения” становится гомозиготным по всем генам; в дальнейшем скрещивают особи двух чистых линий, что резко повышает урожайность гибридов первого поколения, их жизнестойкость. Это явление называется гетерозисом. Однако в последующих поколениях гетерозис снижается, урожайность уменьшается, и поэтому в практике используют только гибриды первого поколения.

Методами скрещивания и индивидуального отбора П. П. Лукьяненко были выведены высокопродуктивные кубанские сорта пшеницы: Безостая 1, Аврора, Кавказ; В. Н. Ремесло на Украине получил сорт Мироновская 808, а затем более урожайные сорта Юбилейная 50, Харьковская 63 и др. В. С. Пустовойт со своими сотрудниками этими методами создал на Кубани сорт подсолнечника, содержащий до 50—52% масла в семенах.

Преодоление бесплодия межвидовых гибридов. Впервые это удалось осуществить в. начале 20-х годов советскому генетику Г. Д. Карпеченко при скрещивании редьки и капусты. Это вновь созданное человеком растение не было похоже ни на редьку, ни на капусту. Стручки занимали как бы промежуточное положение и состояли из двух половинок, из которых одна напоминала стручок капусты, другая — редьки.

Искусственный мутагенез. Естественные мутации сопровождающиеся появлением полезных для человека признаков, возникают очень редко. На их поиски приходится затрачивать много сил и времени. Частота мутаций резко повышается при воздействии мутагенов. К ним относятся некоторые химические вещества а также ультрафиолетовое и рентгеновское излучения. Эти воздействия нарушают строение молекул ДНК и служат причиной резкого возрастания частоты мутаций. Наряду с вредными мутациями нередко обнаруживаются и полезные, которые используются учеными в селекционной работе. Путём воздействия мутагенами в растениеводстве получают и полиплоидные растения, отличающиеся более крупными размерами, высокой урожайностью и более активным синтезом органических веществ. Радиационным облучением с последующим отбором созданы ценные сорта гороха, фасоли, томатов.

Особое место в практике улучшения плодово-ягодных культур занимает селекционная работа И. В. Мичурина. Большое значение он придавал подбору родительских пар для скрещивания. При этом он не использовал местные дикорастущие сорта (так как они обладали стойкой наследственностью, и гибрид обычно уклонялся в сторону дикого родителя), а брал растения из других, отдаленных географических мест и скрещивал их друг с другом. Подобными методами вывели такие ценные сорта, как груша Бере зимняя Мичурина (от скрещивания южного сорта груши Бере Рояль и дикой уссурийской груши) и яблоня Бельфлер-китайка (родители: американский сорт Бельфлер желтый и китайская яблоня родом из Сибири).

Важным звеном в работе Мичурина было целенаправленное воспитание гибридных сеянцев: в определенный период их развития создавались условия для доминирования признаков одного из родителей и подавления признаков другого, т. е. эффективное управление доминированием признаков (разные приемы обработки почвы, внесение удобрений, прививки в крону другого растения и т. п.). Использовался и метод ментора — воспитание на подвое. В качестве привоя он брал как молодое растение, так и почки от зрелого плодоносящего дерева. Этим методом удалось придать желаемую окраску плодам гибрида вишни с черешней под названием “Краса севера”. Мичурин применял также отдаленную гибридизацию. Им получен своеобразный гибрид вишни и черемухи — церападус, а также гибрид терна и сливы, яблони и груши, персика и абрикоса. Все мичуринские сорта поддерживают путем вегетативного размножения. (http://ru.wikipedia.org)

1.4 Успехи селекции

За последние 100 лет селекция достигла поразительных успехов. Урожайность зерновых повысилась на порядок. Сегодня в развитых странах получают до 100 ц/га пшеницы, риса, кукурузы. По новым сортам картофеля зарегистрирован рекордный урожай почти в 1000 ц/га, т. е. в четыре раза выше среднего по возделываемым сортам.

Подобная картина наблюдается и по другим культурам. Сравнение средних и рекордных урожаев свидетельствует лишь о тех резервах, которые заложены в новых сортах и могут быть реализованы при совершенствовании технологий возделывания растений. Это также свидетельствует о том, что селекция имеет огромные перспективы в деле наращивания продовольственного потенциала.

Селекционер, создающий новые сорта растений и породы животных, — это прежде всего ученый, в совершенстве владеющий знаниями генетики, систематики, физиологии и многих других наук. Кроме того, это, образно говоря, художник, создающий вначале абстрактный образ будущего сорта растений или породы животных и только после этого приступающий к его реальному воплощению. Сочетание таких двух качеств в одном человеке является довольно редким явлением, поэтому выдающихся селекционеров, создавших лучшие сорта растений или породы животных, знают повсеместно. Наиболее известные российские селекционеры-растениеводы: А. П. Шехурдин и В. Н. Мамонтова — по яровой пшенице, И. В. Мичурин — по плодовым растениям, П. П. Лукьяненко и В. Н. Ремесло — по озимой пшенице, М. И. Хаджинов и Г. С. Галеев — по кукурузе, В. С. Пустовойт — по подсолнечнику, М. Ф. Иванов, Н. С. Батурин, В. А. Струнников внесли крупный вклад в создание новых пород животных.

2.Генная инженерия

2.1 Понятие о генной инженерии

Генная инженерия возникла в 1972 году, в Станфордском университете, в США. Тогда лаборатория П. Берга получила первую рекомбинатную (гибридную) ДНК или рекДНК. Она соединяла в себе фрагменты ДНК фага лямбда, кишечной палочки и обезьяньего вируса SV40.

Генная, или генетическая инженерия (geneticengineering, geneticmodificationtechnology) – это совокупность биотехнологических методов, позволяющих создавать синтетические системы на молекулярно-биологическом уровне.

Генная инженерия, или технология рекомбинантных ДНК - это изменение с помощью биохимических и генетических методик хромосомного материала - основного наследственного вещества клеток. (Сельскохозяйственный энциклопедический словарь, М.,)

Известно, что хромосомный материал состоит из дезоксирибонуклеиновой кислоты (ДНК). Биологи изолируют те или иные участки ДНК, соединяют их в новых комбинациях и переносят из одной клетки в другую. В результате удается осуществить такие изменения генома, которые естественным путем вряд ли могли бы возникнуть. Фактически генная инженерия занимается тем, что берет гены и части ДНК одного вида, например, рыбы, и пересаживает их в клетки другого, например, помидора. Для этого генная инженерия располагает набором различных технологий для того, чтобы разрезать ДНК произвольно или в определенных участках гена. Выделив сегмент ДНК, можно его изучать, размножать или склеивать с ДНК других клеток и организмов. Генная инженерия позволяет преодолеть межвидовые барьеры и перемешивать информацию между абсолютно не связанными между собой видами. (Дубинин Н.П. «Генетика вчера, сегодня и завтра» - М.: Советская Россия, 1981 г.)

Генная инженерия относится (наряду с биотехнологией, генетикой, молекулярной биологией, и рядом других наук о жизни) к сфере естественных наук.

2.2 Задачи генной инженерии

При внесении в организм (это может быть как растение, животное, микроорганизм так и человек) новых генов, можно наделить его новой желательной характеристикой, которой он до этого никогда не обладал. Организмы, подвергшиеся генной инженерии, называют ГМО (генетически модифицированный организм). Изменение генов прежде всего связано с преобразованием химической структуры ДНК: изменение последовательности нуклеотидов в хромосомной ДНК, выпадение одних и включение других нуклеотидов меняют состав образующихся на ДНК молекулы РНК, а это, в свою очередь, обуславливает новую последовательность аминокислот при синтезе. В результате в клетке синтезируется новый белок, процесс синтеза белка приводит к появлению у организма новых свойств.(“Биофайл” Научно исследовательский журнал)

Задача генетической инженерии — получение желаемых качеств изменяемого или генетически модифицированного организма. В отличие от традиционной селекции, в ходе которой генотип подвергается изменениям лишь косвенно, генная инженерия позволяет непосредственно вмешиваться в генетический аппарат, применяя технику молекулярного клонирования. Примерами применения генной инженерии в сельском хозяйстве являются получение новых генетически модифицированных сортов зерновых культур, устойчивых к насекомым-вредителям.

Генная инженерия непосредственно в сельском хозяйстве имела место уже в конце 1980-х годов, когда удалось успешно внедрить новые гены в десятки видов растений и животных — создать растения табака со светящимися листьями, томаты, легко переносящие заморозки, кукурузу, устойчивую к воздействию пестицидов.

Одна из важных задач генной инженерии — получение растений, устойчивых к вирусам, так как в настоящее время не существует других способов борьбы с вирусными инфекциями сельскохозяйственных культур. Введение в растительные клетки генов белка оболочки вируса, делает растения устойчивыми к данному вирусу. В настоящее время получены трансгенные растения, способные противостоять воздействию более десятка различных вирусных инфекций.

Другая важная задача генетической инженерии связана с защитой растений от насекомых-вредителей. Применение инсектицидов не всегда является эффективным в связи с их токсичностью и возможностью смыва инсектицидов с растений дождевой водой.

Самыми распространенными ГМ растениями являются культуры, устойчивые к недорогим, наименее токсичным и наиболее широко используемым гербицидам. Возделывание таких культур позволяет получать более высокий урожай с гектара, избавиться от изнурительной ручной прополки, тратить меньше средств за счет минимальной или беспахотной обработки земли, что, в свою очередь, приводит к снижению эрозии почвы.

В генно-инженерных лабораториях Бельгии и США были успешно проведены работы по внедрению в растительную клетку генов земляной бактерии Bacillusthuringiensis, которые позволяют синтезировать инсектициды бактериального происхождения. Эти гены были введены в клетки картофеля, томатов и хлопчатника, вследствие чего трансгенные растения картофеля и томатов стали устойчивы к колорадскому жуку, растения хлопчатника оказались устойчивыми к разным насекомым, в том числе и к хлопковой совке. Применение генной инженерии в сельском хозяйстве позволило сократить использование инсектицидов на 40 — 60%. Генными инженерами были выведены трансгенные растения с удлиненным сроком созревания плодов. Это дает возможность снимать такие помидоры с куста красными с уверенностью, что они не перезреют при транспортировке.

Список растений, к которым успешно применены методы генной инженерии, пополняется. В него входят яблоня, виноград, слива, капуста, баклажаны, огурцы, пшеница, рис, соя, рожь и множество других сельскохозяйственных культур.

2.3 Технология создания ГМО

Технология получения генетически модифицированных организмов (ГМО) принципиально решает вопросы преодоления всех естественных и межвидовых рекомбинационных и репродуктивных барьеров. Генная инженерия позволяет оперировать любыми генами, даже синтезированными искусственно или принадлежащими не родственным организмам, переносить их от одного вида к другому, комбинировать в произвольном порядке.

Этапов создания ГМО:

1. Получение изолированного гена.

2. Введение гена в вектор для встраивания в организм.

3. Перенос вектора с конструкцией в модифицируемый организм-рецепиент.

4. Молекулярное клонирование.

5. Отбор ГМО.

Первый этап – синтез, выделение и идентификация целевых фрагментов ДНК или РНК и регуляторных элементов очень хорошо разработан и автоматизирован. Изолированный ген может быть также получен из фаговой библиотеки.

Второй этап – создание invitro (в пробирке) генетической конструкции (трансгена), которая содержит один или несколько фрагментов ДНК (кодирующих последовательность аминокислот белков) в совокупности с регуляторными элементами (последние обеспечивают активность трансгенов в организме). Далее трансгены встраивают в ДНК вектора для клонирования, используя инструментарий генной инженерии – рестриктазы и лигазы. За открытие рестриктаз Вернер Арбер, ДаниелНатанс и Хамилтон Смит были удостоены Нобелевской премии (1978 г.). Как правило, в качестве вектора используют плазмиды – небольшие кольцевые молекулы ДНК бактериального происхождения.

Следующий этап – собственно «генетическая модификация» (трансформация), т.е. перенос конструкции «вектор – встроенная ДНК» в отдельные живые клетки. Введение готового гена в наследственный аппарат клеток растений и животных представляет собой сложную задачу, которая была решена после изучения особенностей внедрения чужеродной ДНК (вируса или бактерии) в генетический аппарат клетки. Процесс трансфекции был использован как принцип введения генетического материала в клетку.

Если трансформация прошла успешно, то после эффективной репликации из одной трансформированной клетки возникает множество дочерних клеток, содержащих искусственно созданную генетическую конструкцию. Основой для появления у организма нового признака служит биосинтез новых для организма белков – продуктов трансгена, например, растений – устойчивости к засухе или насекомым-вредителям у ГМ растений . («В мире науки» журнал, № 4, 2006 г.)

2.4 Недостатки и преимущества ГМО культур

Исследователи с очень большим воодушевлением взялись использовать генную инженерию для выведения более урожайных сортов пшеницы, создания более питательных продуктов питания, ликвидации определенных болезней, надеясь таким образом улучшить жизнь человека на Земле. Но, в действительности, несмотря на то, что гены могут быть извлечены и правильно скрещены в экспериментальной колбе, в жизни очень трудно прогнозировать последствия вживления генов в чужой организм. Такие операции могут стать причиной мутаций, в результате которых подавляется деятельность естественных генов организма. Внедренные гены могут также вызвать неожиданные побочные эффекты: генетически сфабрикованная пища может, к примеру, содержать токсины и аллергены или иметь пониженную питательность, и в результате потребители заболевают или даже, как уже случалось, умирают. Kроме того организмы, выведенные при помощи генной инженерии, способны самостоятельно размножаться и скрещиваться с природными, не претерпевшими генное вмешательство популяциями, вызывая при этом необратимые биологические изменения во всей экосистеме Земли.

Преимущества ГМО пищи

Трансгенные растения (ТР) способствуют росту продуктивности. Это позволяет сохранить ту часть урожая, которая ранее терялась из-за воздействия факторов биотического стресса и неэффективной защиты.

ТР можно придать полезные свойства. Например, британскими учеными разработан новый сорт риса – «золотой рис» – генетически улучшенный с помощью бетакаротина, который в организме человека превращается в витамин А. Из улучшенной кукурузы, соевых бобов и рапса получается растительное масло, в котором снижено количество насыщенных жиров. В трансгенных сортах картофеля и кукурузы больше крахмала и меньше воды. Такой картофель при жарке требует немного масла, легче усваивается желудком. Усовершенствованные помидоры, тыква и картофель лучше сохраняют витамины С, Е и бетакаротин.

ТР можно использовать в фармакологических целях как биофабрики по производству белков интерлейнинов, стимулируя защитные свойства человека (в частности моркови, бананов и др.).

Обобщая вышесказанное, можно сделать вывод, что применение ТР:

-повышает продуктивность сельскохозяйственных культур;

-позволяет увеличить производство сельскохозяйственной продукции, не расширяя пахотных земель;

-уменьшает ущерб окружающей среды от использования ядохимикатов;

-позволяет получить экономическую выгоду за счет снижения трудозатрат и экономии энергоресурсов.

А ведь в дальнейшем будут создаваться совершенно новые продукты, с улучшенной или измененной пищевой ценностью, устойчивые к воздействию климатических факторов, засолению почв, а также имеющих больший срок хранения и улучшенные вкусовые свойства, характеризующиеся отсутствием аллергенов. Более отдаленное будущее – это растения, которые продуцируют определенные химические соединения, вакцины и т.д. И это не фантастика. Лабораторные наработки показывают эффективность этого направления.

А в перспективе культуры третьего поколения (примерно с 2015 г). Для них помимо вышеперечисленных качеств будет характерно изменение архитектуры растений, например, низкорослость как фактор устойчивости в ветреных областях. Или изменение времени цветения и плодоношения – тогда станет возможным выращивать тропические фрукты в средней полосе. Или изменение размера, формы и количества плодов. Или рост эффективности фотосинтеза – это приведет к увеличению содержания кислорода в воздухе. Или продуцирование пищевых веществ с повышенным уровнем ассимиляции, лучше усваивающихся организмом.(« В мире науки» журнал, № 4, 2006 г.)

Недостатки использования ГМО пищи

Потенциальную опасность трансгенных организмов ученые и специалисты связывают со следующими возможными отрицательными последствиями;

• Вытеснение природных организмов из их экологических ниш с последующим нарушением экологического равновесия. Эти риски связаны, прежде всего, с появлением суперсорняков, с формированием новых, устойчивых к ядам, популяций насекомых, генетическим загрязнением и безвозвратной потерей традиционных сортов важнейших сельхозкультур, а также с возрастанием химического загрязнения окружающей среды пестицидами.

• Уменьшение биоразнообразия. ГМО представляют риск для биоразнообразия (генетического в том числе), так как они взаимодействуют в природе со всем живым, что их окружает. Ученые определили несколько проблемных сфер – появление новых вредителей, суперсорняков, генетическое загрязнение, перекрестное опыление ГМ культур и обычных, появление новых вирусов, а также другие частные «слабые места» в зависимости от типа ГМО.

• Бесконтрольный перенос чужеродных генов из трансгенных организмов в природные, что предположительно может привести к активации ранее известных или образованию новых патогенов. Трансгенные конструкции имеют возможность перемещаться в другие растения, родственные, либо того же типа. Генетически модифицированный материал переносится в пыльце с помощью, скажем, ветра на соседние поля. Фермеры, ведущие органическое или традиционное сельское хозяйство в Европе и США озабочены этим фактом, поскольку полученные благодаря методам генной инженерии растения не считаются органической продукцией, которая становится все более и более популярной, особенно в Европе. В 1999 году американская компания органических продуктов TerraPrima уничтожила 87 тыс. мешков органических кукурузных чипсов, отправленных в Европу, когда испытания показали содержание в них ГМ-материала. Ученые Великобритании, например, обнаружили пыльцу ГМ рапса в пчелиных ульях на расстоянии 4 километра от поля. А канадские производители экологически чистой сельскохозяйственной продукции постепенно разоряются из-за генетического загрязнения их посевов от расположенных рядом генно-модифицированных полей.

Условно риски, связанные с использованием ГМО пищи, можно разделить по объекту воздействия на:

- экологические;

- медицинские;

- социально-экономические.

Подробного рассмотрения заслуживают риски медицинские, так как для потребителей на первом месте стоит влияние подобных продуктов на здоровье.

На сегодняшний день нет прямых научных доказательств отрицательного воздействия трансгенных растений на человека. Проводятся различные исследования, но полученные результаты слишком противоречивы, чтобы делать однозначные выводы. Однако ученые и медики признают появление и подтверждают наличие отдельных рисков для здоровья человека.

Трансгены могут вызывать:

- Повышенную аллергеноопасность. Выявлены факты появления аллергии у определенной группы людей на продукты переработки генетически модифицированной сои фирмы «Pioneer». Дальнейшие исследования показали, что аллергическая реакция возникает у людей, имеющих аллергию на американский орех;

- Возможную токсичность. Генетически модифицированные манипуляции наделяют растения или животных неприсущими им свойствами. При этом возникает проблема: остановить или предугадать процесс функционирования комбинированного гена практически невозможно, поэтому уверенности в том, что съедаемые нами генетически модифицированные растения не станут производить новые токсины нет;

- Устойчивость к действию антибиотиков. Появление большого количества антибиотикоустойчивых бактерий наблюдалось несколько лет назад в Дании: тысячи людей оказались жертвами эпидемии сальмонеллеза, вызванной новым, устойчивым к антибиотикам, штаммом сальмонеллы. Следует, однако, заметить, что устойчивые к антибиотикам штаммы бактерий возникают отнюдь не благодаря генной инженерии.(« В мире науки» журнал, № 4, 2006 г.)

Заключение

В работе рассмотрена история селекции в разрезе новых технологий. На сегодняшний день необходимо внедрять эти методы в современное сельское хозяйство. Но перед учеными стоит большая проблема малой развитости данных технологий в Российской Федерации. В большинстве случаев в нашей стране просо не хватает финансирования для организации своего производства. Также одной из важнейших проблем в этой области является несовершенно проработанное законодательство.

Большое внимание уделено продукции, получаемой методами генной инженерии, так как эта проблема насущной на сегодняшний день. Научный мир, работающий в этой области в настоящее время, разделен на две противоборствующие стороны - сторонники ГМ продуктов и их противники. Поэтому указаны "За" и "Против" этих методов.

Хотелось бы отметить не однозначное отношение к продукции получаемой современными методами селекции, а в частности генной инженерией. Так как основы доводов противников и сторонников изучены не достаточно, поэтому в будущем стоит уделять большое внимание изучению транс генной продукции на организм человека.

Таким образом, были рассмотрены основные характеристики селекции и генной инженерии: ее преимущества, какие качества "прививают" растениям, где в основном выращиваются генномодифицированные - растения, недостатки генной инженерии, а также ее перспективы.

Библиографический список

  1. Алексеев А.И., Николина В.В. География: население и хозяйство России./ Алексеев А. И., Болысов С. И., Николина В. В.// Учебник для общеобразоват. учреждений.– М.: Просвещение, 2009. -239 с.

  2. Аспиз М.Е, Энциклопедический словарь юного биолога/ М.Е Аспиз //Словарь - М.: Педагогика, 1986. — 352 с.

  3. Стражев В.И., Анализ хозяйственной деятельности в промышленности/ В.И. Стражев//Учебник.Мн.: Вышэйшая школа, 2008. – 527 с.

  4. Гиляров М.С., Биологический энциклопедический словарь/Гл. ред. М .С. Гиляров//Энциклопедия - М ., "Сов. энциклопедия ", 1989. 864 стр

  5. Данилова В.С., Основные концепции современного естествознания / В.С.Данилова , Н.Н. Кожевников// учебникдля студентов высших учебных заведений - М.: Аспект Пресс, 2001 г. - 447 с.

  6. Прохоров, А.М., Большой энциклопедический словарь/ ред. Прохоров, А.М.//Энциклопедия - М.: Большая Российская энциклопедия; Издание 2-е, перераб. и доп. 1998 г. - 1456c.

  7. Уотсон Дж. Молекулярная биология гена/Перевод с английского под редакцией академика В. А. Энгельгардта//генетика - М.: Издательство Мир, 1978, - 712 с

  8. Муромцев Г.С. Основы сельскохозяйственной биотехнологии/ Г.С. Муромцев ,Р.С. Бутенко, Т.И. Тихоненко и др.//учебник – М.: Наука, 1990г. 384с

  9. Кибернштерн Ф. Гены и генетика, Москва, “Параграф”, 1995.

  10. Пеков А.П. Биология и общая генетика/ А.П. Пеков// учебное пособие - М.: Издательство Российского универститета дружбы народов, 1994, с.131-139.

  11. Дубинин Н.П. Генетика вчера, сегодня и завтра - М.: Советская Россия, 1981 г. 224с.

  12. Меркурьева Е.К. Генетика/ Е.К. Меркурьева, З.В Абрамова, А.В Бакай и др - М.: Агропромиздат, 1991 г.

  13. Полюбина И.Б. Отечественный агрокомплекс: реальность и перспективы.// Агроинформ. 2003. №4. С. 2.

  14. Растениеводство России в 2003 году // Экономика сельского хозяйства России. 2004. №3. С.17.

  15. Месяц В.К. Сельскохозяйственный энциклопедический словарь/ гл. ред - В.К.Месяц, Н.М.Голышин, В.Г.Гребцова и др.// энциклопедия - М.: Советская энциклопедия, 1989г. 656с.

  16. Серебровский А.С. Селекция растений и животных, М.: Колос 1969г. – 295с.

  17. Шевелуха В.С., Калашников В.А. Под ред. В.С. Шевелухи “Сельско хозяйственная биотехнология” М.: Высшая школа, 2003г

  18. "Биология" - еженедельное приложение к газете "Первое сентября" (№21 1998)

  19. "Биология" - еженедельное приложение к газете "Первое сентября" (№21 1997)

  20. "Биология" - еженедельное приложение к газете "Первое сентября" (№7 1998)

  21. “Биофайл” Научно исследовательский журнал

  22. « В мире науки» журнал, № 4, 2006 г.

  23. AGROфорум «Генная инженерия в сельском хозяйстве» 6.06.2013

  24. Журнал «Биотехнология» издается при поддержке ФГУП "ГосНИИгенетика"

  25. Сbio.ru интернет-журнал «Коммерческая биотехнология»

  26. http://ru.wikipedia.org

  27. http://moikompas.ru/compas/genenginery

  28. http://www.apocalyps.info/forum/24-37-1

  29. http://med-books.info/veterinariya_727/gennaya-injeneriya.html

23

Просмотров работы: 9032