АНАЛИЗ РАБОТЫ КЕРАМИЧЕСКИХ ДИСКОВЫХ ВАКУУМ ФИЛЬТРОВ - Студенческий научный форум

VII Международная студенческая научная конференция Студенческий научный форум - 2015

АНАЛИЗ РАБОТЫ КЕРАМИЧЕСКИХ ДИСКОВЫХ ВАКУУМ ФИЛЬТРОВ

Стовпенко А.С., Нарижных В.Ю., Лозовая С.Ю.
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Ранее и в настоящее время обогатительные фабрики использовали для фильтрации и очистки воды от концентрата использовали дисковые вакуум фильтры типа ДОО, в которых использовались диски обернутые в фильтроткань.

Дисковые вакуум фильтры (рис. 1,а) предназначены для разделения суспензий с относительно однородным составом и медленно осаждающимися частицами твердой фазы [1]. Эти фильтры (рис. 1,а) обладают развитой фильтрующей поверхностью и состоят из горизонтально расположенного вала, на котором закреплены диски 1, частично погруженные в ванну 2 с разделяемой суспензией. Каждый диск состоит из обтянутых фильтровальной тканью полых секторов, имеющих с обеих сторон перфорированную поверхность. Цикл работы сектора диска состоит из: зона фильтрации: при вращении рабочего вала фильтрующий элемент погружается в суспензию. Под воздействием вакуума и капиллярного эффекта керамической лопатки на её поверхности образуется отфильтрованный осадок. Фильтрат через керамическую лопатку, коллекторную систему и вакуумметрическую систему поступает в дренажную ёмкость; зона промывки осадка: фильтрующий элемент с отфильтрованным осадком выходит из суспензии и промывается распылением технологической жидкостью посредством форсунок; зона сушки осадка: дальнейшее непрерывное обезвоживание фильтровального осадка проводится под действием высокого вакуумного разряжения; зона выгрузки осадка: скребок снимает подсушенный осадок с лопатки; зона регенерации фильтрующего элемента: после скребка техническая вода с воздухом из воздушной магистрали, образуя водо-воздушную смесь, поступает в керамические пластины через коллекторную систему и промывает забитые поры обратной продувкой.

а) б)

Рис. 1. Дисковый вакуум фильтр

а- схема фильтра: 1- сектор фильтрующего диска; 2- ванна фильтра; 3- распределительная головка; 4-нож;

б- сектор с ловушкой к дисковому вакуум фильтру ДУ 250-3,75 "Сибирь": 1- бигель; 2-стяжка; 3-дека; 4- ребра жесткости; 5-манжета; 6-ловушка; 7-ячейковый вал;

Главной проблемой этого фильтра является повышенный износ и недолговечность фильтроткани, которой обтянуты сектора дисков.

Сектор дискового вакуум фильтра “Сибирь”(рис. 1,б) состоит из двух дек 3, отлитых из алюминиевого сплава, соединенных между собой болтами. Между сектором и ячейковым валом расположена ловушка 6 для улавливания влаги, вытесняемой обратно в осадок при отдувке его сжатым воздухом.

У подобного типа устройств существуют такие недостатки как: не большое живое сечение сектора до 40%; большая масса металлических секторов с перфорированной декой (достигает 22 кг); замена фильтроткани на таких секторах требует больших затрат ручного труда.

Поэтому актуальной задачей является: создание минимального гидроаэродинамического сопротивления водо-воздушной смеси в тракте диска от фильтрующей перегородки до вакуумной системы.

В настоящее время используются секторные элементы из керамических материалов [2].

Такая конструкция сектора диска вакуум фильтра обеспечивает:

-создание почти абсолютного вакуума в системе, что позволяет получать очень сухой кек, не требующий последующей сушки;

- очень чистый фильтрат, практически не имеющий твердых частиц;

-уменьшение энергозатрат;

-отсутствие фильтроткани;

- долгий срок службы пластин (от одного года и более);

- минимальное количество дорогостоящего оборудования (компрессоры, насосы, запорные клапаны, фильтроткань и т.п.);

-при необходимости возможна промывка кека водой;

С целью увеличения надежности устройства были рассмотрены несколько типов секторов дисков и определены напряжения, перемещения и деформации возникающие при их работе с использованием программного продукта Solid Works 2012 от компании Siemens.

Диски пористого керамического фильтра [3] (рис. 2,) собраны из плоских пористых пластин 1, 2, которые имеют первичные и вторичные дистанционные элементы 3, 4 соответственно, каналы 5, сливное отверстие 6 и отверстия 7.

Пористые керамические пластины 1, 2 служат для удержания на фильтрующей поверхности твердого осадка (кека) и поступления фильтрата через капилляры в каналы 5. Первичные дистанционные элементы 3 расположены по периметру пористого керамического фильтра, определяют его геометрическую форму и заданные размеры.

Вторичные дистанционные элементы 4 формируют разветвленную форму и величину каналов 5 и имеют в сечении форму известных плоских геометрических фигур. Сливное отверстие 6 предназначено для вывода фильтрата в режиме фильтрации и ввода регенерирующей жидкости на этапе регенерации плоских, пористых керамических пластин 1, 2. Отверстия 7 предназначены для крепления пористого керамического фильтра на диске вакуумно-сушильного устройства.

Пористый керамический фильтр через отверстия 7 крепится на диск вакуумно-сушильного устройства и через выходное отверстие 6 соединен с пустотелым валом. При вращении вала фильтрующей установки пористый керамический фильтр погружается в резервуар для вещества, которое необходимо отфильтровать. В результате отсоса через пустотелый вал происходит процесс фильтрации через плоские пористые пластины 1, 2. Фильтрат собирается в каналах 5 и выводится через сливное отверстие 6 в пустотелый вал.

а) б)

Рис.2. Пористая пластина

Секторный элемент диска керамического фильтра [4] (рис. 3.) содержит плоские пористые пластины 1, 2, первичные и вторичные дистанционные элементы 3, 4 соответственно, периферийные вторичные дистанционные элементы 5, горизонтальную перегородку 6, каналы 7, сливное отверстие 8, монтажное отверстие 9. Первичные и вторичные дистанционные элементы образуют совместно с каналами и сливными отверстиями единое полое пространство и соединены в блок.

Плоские пористые керамические пластины 1, 2 предназначены для удержания на фильтрующей поверхности твердого осадка (кека) и поступления фильтрата через проницаемую пористость в каналы 7. Первичные дистанционные элементы 3 расположены по периметру секторного элемента и определяют его геометрическую форму, заданные размеры и связывают в единый пустотелый блок пористые керамические пластины 1, 2. Вторичные дистанционные элементы 4 формируют разветвленную форму и величину каналов 7. Периферийные вторичные дистанционные элементы 5 придают жесткость первичным дистанционным элементам 3 и усиливают прочность на разрыв плоских пористых пластин 1, 2 в местах сопряжения с первичными дистанционными элементами 3.

Горизонтальная перегородка 6 усиливает общую конструкционную прочность секторного элемента и позволяет сформировать плоскость сечения в каждый пустотелый объем, определяющую скорость выхода фильтрата и ввода регенерирующей жидкости из выходного отверстия 8.

а) б) в)

Рис.3, Секторный элемент.

Секторный элемент диска [2] (рис. 4.) содержит пустотелый блок 1, включающий внутренние элементы 2, которые расположены рядами со смещением по дугам концентрических окружностей с образованием пустотелого объема 3, и боковые стенки 4. Пустотелый блок 1 выполнен из пористой керамики с радиусами R и r линий сопряжения в верхней и нижней частях 5 и 6 секторного элемента соответственно. Кроме того, сектор содержит выходной патрубок 7, соединение которого с пустотелым блоком 1 осуществлено резьбовым соединением с герметичным уплотнителем 8.

Расположение внутренних элементов 2 смещенными рядами по дугам концентрических окружностей придает поверхности фильтрации волновую форму, что интенсифицирует процесс набора кека и его равномерность распределения.

Резьбовое соединение патрубка 7 с герметичным уплотнителем 8 увеличивает соединительную связь металлического патрубка 7 с керамическим блоком 1, а герметичный уплотнитель 8 предотвращает снижение давления при отдувке кека при регенерации фильтрующей поверхности. При помощи выходного патрубка 7 сектор крепится к пустотелому валу фильтровальной установки.

а) б)

Рис. 4. Сектор диска.

На рис.5 линиями обозначена распределение потоков суспензии в карманах, которые показывают, что за счет снижения диаметра патрубков обеспечивается равномерную подачу суспензии во всех карманах и во всем из объеме.

Рис.5. Схема распределения потоков в рабочей зоне вакуум фильтра (разработана в Solid Works)

Анализ напряжений, перемещений и деформаций в описанных выше конструкциях секторов фильтрующих керамических дисков (табл. 1), а также распределения потоков в карманах при дисках (рис. 5), показал :

1. В секторе [3] максимальные напряжения возникающие в серединной части сектора по всей ширине, а следовательно перемещения и деформации сконцентрированы там же. Очевидно , что вероятность разрушения секторов велика, так как нагрузка сосредоточена по всей площади серединной зоны сектора.

2. В секторе [4] максимальные напряжения возникают в середине пластины на расстоянии примерно 2/3 от наружной поверхности и по краям, что может привести к выкрашиванию от центра к краю, что приведет к разрушению сектора.

3. Сектор [5] нагружен с равномерным увеличением от внутренней поверхности к наружной, где достигает максимального значения. Как видно из характера распределения потоков (рис. 5.) основная нагрузка на диск осуществляется на наружной поверхности и вероятность разрушения. Но если увеличить площадь внутренних элементов, расположенных у наружной части сектора, то она будет разгружена, однако при этом снизится полезная площадь рабочей поверхности сектора.

Таблица. 1.

Патент № 2217214

Патент №2405615

Патент№2205057

     

Максимальные напряжения

11.011e+006 N/m^2

1.01906e+007 N/m^2

6.02746e+006 N/m^2

     

Максимальные перемещения

0.00037271 mm

0.0147903 mm

0.00200621 mm

     

Максимальные деформации

3.32912e-006

2.97802e-005

1.58539e-005

     

Таким образом проведя исследования была получена схема распределения потоков в рабочей зоне вакуум фильтра, который выявил необходимость снижения диаметров патрубков по мере удаления от трубопровода. Анализ напряжений, перемещений и деформаций сектора диска возникающих от воздействия потока суспензии позволил определить его наиболее целесообразную конструкцию сектора диска керамического дискового вакуум фильтра.

Список используемой литературы:

1. Розанов Л.Н. Вакуумная техника: Учеб. для вузов по спец. "Вакуумная техника".-2-е изд., перераб. и доп. - М.: Высш. шк. 1990.-320 с.: ил.

2. Секторный элемент дискового керамического фильтра, патент РФ № 2205057. заявка от 01.03.2002, зарегистрировано 27.05.2003, B01D33/23

3. Пористый керамический фильтр, патент РФ № 2217214. заявка от 25.10.2002, зарегистрировано 27.11.2003, B01D33/23

4. Секторный элемент дискового керамического фильтра, патент РФ № 2405615. заявка от 5.08.2009, зарегистрировано 10.12.2010, B01D33/23
Просмотров работы: 1473