Известно, что с ростом скорости вращения ротора увеличивается и уровень его вибрации, усложняются динамические процессы в системе. Поэтому для проектирования и использования узлов с газовыми опорами необходимо определять не только статические, но и динамические характеристики системы «ротор-подшипник».
Наиболее достоверные данные получаются на основе проведения экспериментальных исследований. С этой целью разработана конструкция экспериментального стенда, которая представлена на рисунке 1.
1 – вал; 2,3 – опорные газостатические подшипники;
4 – нагрузочный подшипник; 5,6 – устройство, создающее радиальную
нагрузку; 7 – турбина; 8 – датчик, регистрирующий перемещения вала
Рисунок 1 – Экспериментальный стенд для исследования характеристик газостатического подшипника
Опорами вала служат два газостатических подшипника 2, 3, которые имеют два сдвоенных ряда питателей. С помощью поршня 5 и подшипника 4 на вал создаётся радиальная нагрузка. Приводом служит малоразмерная турбина 7. От компрессора сжатый воздух подается к воздушным опорам вала, нагрузочному подшипнику, нагрузочному устройству и к турбине. Колебания ротора регистрирует индукционный датчик 8.
В ходе экспериментов варьировались следующие параметры: давление надува газа в опоры, частота вращения вала, статическая нагрузка, уровень дисбаланса вала и средний радиальный зазор газовой опоры.
Известно, что при работе ротора на газостатических подшипниках его ось подвижна (траекторию оси называют кривой подвижного равновесия). Смещение ротора относительно оси симметрии газостатических опор в результате действия сил тяжести и других внешних сил при вращении обуславливает появление центробежной силы инерции. Кроме этого в газовом зазоре опоры возникают и газодинамические силы, источником которых является изменение радиального зазора в газовом слое [2].
Для оценки устойчивости работы роторной системы и точности вращения вала необходимо иметь сведения о перемещениях ротора при различных режимных параметрах работы и воздействии внешних возмущений.
Реализована следующая методика проведения исследований. В момент стабилизации работы ротора создается импульсное воздействие, сила которого регистрируется с помощью ударного молотка со встроенным датчиком силы. При этом определяется перемещение ротора, обусловленное этим импульсным воздействием.
С помощью пакета Mathlab находится передаточная функция перемещений оси ротора в зависимости от величины нагрузки, что позволяет получить амплитудно-фазо-частотные характеристики системы и в дальнейшем построить модель динамического воздействия на ротор.
Подводя итоги, можно отметить следующее. Разработан и изготовлен экспериментальный стенд для исследования влияния импульсного воздействия на устойчивость ротора. Проведена серия зондирующих экспериментов по исследованию влияния различных конструктивных и режимных параметров на устойчивость высокоскоростных роторов и траекторию их движения.
Список использованных источников
1. Космынин, А. В. Эксплуатационные характеристики газовых опор высокоскоростных шпиндельных узлов / А.В. Космынин, Ю. Г. Кабалдин, В. С. Виноградов, и др. - М.: «Академия естествознания», 2006. - 219 с.
2. Шейнберг, С.А. Опоры скольжения с газовой смазкой / С.А. Шейнберг, В.П. Жедь, М.Д. Шишеев [и др.]; под ред. С.А. Шейнберга. 2-е изд. – М.: Машиностроение, 1979. – 336 с.