ЛИНЕЙНЫЕ МОДЕЛИ ОБМЕНА - Студенческий научный форум

V Международная студенческая научная конференция Студенческий научный форум - 2013

ЛИНЕЙНЫЕ МОДЕЛИ ОБМЕНА

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Аппарат линейной алгебры может быть использован для построения микроэкономических моделей, а именно отыскание собственных чисел и собственных векторов квадратной матрицы.

При исследовании различных экономических ситуаций возникает необходимость рассматривать матрицу обмена и находить ее собственные векторы.

Рассмотрим задачу о равновесии цен в простой модели обмена.

Пусть имеется система из n отраслей производства, каждая из которых выпускает продукцию одного вида. Примем за единицу объем продукции каждой отрасли в рассматриваемом периоде. Обмен продукцией происходит только внутри системы (экономика замкнута) и известна матрица А:

(1)

где αij – доля продукции j-й отрасли, которая поступает в i-ю отрасль.

Ясно, что для матрицы А выполнены два условия:

  1. αij ≥ 0, I = 1,2,…n;

Второе условие вызвано тем, что вся продукция j-ой отрасли предназначена для обмена внутри системы. Матрица (1), для которой выполнены условия 1 и 2, называется матрицей обмена. Требуется установить такие цены на продукцию каждой отрасли, при которых вся система находится в равновесии, т.е. ни одна отрасль не обогащается за счёт другой.

Пусть хi - цена одной единицы продукции i-й отрасли, а - вектор цен. Тогда расход i-й отрасли, т.е. стоимость всей закупаемой ею продукции, таков:

Чтобы отрасль могла развиваться, её расход не должен превышать дохода, который равен стоимости произведённой ею продукции, т.е. xi: (2)

Если искомые равновесные цены существуют, то система неравенств (2) выполняется для них как система равенств:

Таким образом, задача свелась к следующему:

  1. выяснить, является ли число λ=1собственным числом матрицы обмена А;

  2. если да, то найти соответствующий этому собственному числу полуположительный собственный вектор матрицы А.

Для того чтобы число λ=1было собственным числом матрицы обмена А, необходимо и достаточно, чтобы выполнялось равенство .

Итак, число 1 является собственным числом матрицы обмена и для отыскания соответствующего ему собственного вектора следует найти полуположительное решение однородной системы (A – E) . Найденный полуположительный вектор является искомым вектором равновесных цен.

Рассмотрим пример: экономическая система состоит из трёх отраслей производства, каждая из которых выпускает один вид продукции. Обмен внутри системы происходит в соответствии с данной матрицей обмена

.

Найдем вектор равновесных цен. Составим однородную систему линейных уровнений (А-Е) :

Решив её, получим :

Полагая а › 0, находим равновесные цены на продукцию каждой отрасли: х1=33а; х2=32а; х3=28а, где а можно трактовать как множитель, связанный с денежной единицей.

Другая экономическая модель, где решается математическая задача того же вида, - это модель международной торговли. Рассмотрим систему из п стран, торгующих только друг с другом (т.е. система замкнута). Известна матрица , где - доля средств j-й страны, затрачиваемая на импорт из i-й страны. Матрица А является матрицей обмена (1), т.е. и

Требуется найти первоначальное распределение средств между странами, обеспечивающее равновесие всей системы, т.е. такое положение, при котором в каждой стране после каждого цикла обмена остаётся столько же средств, сколько было до обмена.

Пусть хi - количество средств i-й страны, т.е. вектор описывает искомое распределение средств. Ясно, что надо найти вектор , удовлетворяющий условиям

Ранее было показано, что число 1 есть собственное число матрицы обмена А и что существует полуположительный собственный вектор матрицы А, соответствующий этому собственному числу. Вектор и является искомым первоначальным распределением средств. Система при этом будет находиться в равновесии, т.е. расход каждой страны в каждом цикле обмена совпадает с её доходом от экспорта и не изменяется от цикла к циклу.

Просмотров работы: 3035