ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭКОНОМИКО-МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ - Студенческий научный форум

V Международная студенческая научная конференция Студенческий научный форум - 2013

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭКОНОМИКО-МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

Андронов Д.Е. 1, Титова В.А. 1
1Волгоградский государственный аграрный университет
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Экономико-математическое моделирование является неотъемлемой частью любого исследования в области экономики. Бурное развитие математического анализа, исследования операций, теории вероятностей и математической статистики способствовало формированию различного рода моделей экономики.

Развитие первого направления в мировой и отечественной науке связано с такими именами, как Л.Н. Канторович, Дж.Ф. Нейман, В.С. Немчинов, Н.А. Новожилов, Л.Н. Леонтьев и многие другие. Большой интерес в этом направлении представляют модели агрегированной экономики, где рассматривается отраслевой, народнохозяйственный уровень.

Как и всякое моделирование, экономико-математическое моделирование основывается на принципе аналогии, т.е. возможности изучения объекта(почему-либо трудно доступного для исследований) не непосредственно, а через рассмотрение другого, подобного ему и более доступного объекта, его модели. В данном случае таким более доступным объектом является экономико-математическая модель. При построении моделей те или иные теории или гипотезы благодаря формализацииквантификации становятся обозримыми, уточняются, и это способствует лучшему пониманию изучаемых проблем. Моделирование оказывает и обратное влияние на исследователей, требуя четкости формулировки исследовательской задачи, строгой логичности в построении гипотез и концепций.

Математические модели экономических процессов и явлений более кратко можно назвать экономико-математическими моделями. Для классификации этих моделей используются разные основания.

По целевому назначению экономико-математические модели делятся на теоретико-аналитические, используемые в исследованиях общих свойств и закономерностей экономических процессов, и прикладные, применяемые в решении конкретных экономических задач (модели экономического анализа, прогнозирования, управления).

Экономико-математические модели могут предназначаться для исследования разных сторон народного хозяйства (в частности, его, производственно-технологической, социальной, территориальной структур) и его отдельных частей. При классификации моделей по исследуемым экономическим процессам и содержательной проблематике можно выделить модели народного хозяйства в целом и его подсистем – отраслей, регионов и т.д., комплексы моделей производства, потребления, формирования и распределения доходов, трудовых ресурсов, ценообразования, финансовых связей и т.п.

С ростом временного горизонта увеличивается разнообразие вариантов перспективного развития экономики и возрастает число степеней свободы для выбора оптимальных решений, поскольку уменьшается влияние ограниченности ресурсов, неизбежно предопределяемой предшествующим развитием. Однако сростом временного горизонта фактор неопределенности также начинает играть всевозрастающую роль. По мнению Ю.Н. Черемных, "укрупненная номенклатура динамических моделей регламентируется в первую очередь качеством информационного обеспечения. Переход к такой номенклатуре для сокращения размерности может быть продиктован недостаточно мощным алгоритмическим и машинным обеспечением". Для отыскания оптимальных траекторий динамических народнохозяйственных моделей используются как конечные, так и бесконечные методы, предложенные для решения задач математического программирования.

Большое теоретическое и прикладное значение динамических моделей стимулировало многих авторов на разработку специальных методов поиска оптимальных траекторий. Предложенные методы учитывают явно или не явно блочную структуру ограничений динамических моделей и строятся обычно без учета конкретных особенностей оптимальных траекторий.

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако, методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания. Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Рассмотрим только такие"модели", которые являются инструментами получения знаний. Модель – это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект – оригинал так, что его непосредственное изучение дает новые знания об объекте – оригинале.

Под моделирование понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез. Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.

Процесс моделирования включает три элемента:

1) субъект (исследователь);

2) объект исследования;

3) модель, опосредствующую отношения познающего субъекта и познаваемого объекта.

Проникновение математики в экономическую науку связано с преодолением значительных трудностей. В этом отчасти была "повинна" математика, на протяжении нескольких веков в основном в связи с потребностями физики и техники. Но главные причины лежат все же в природе экономических процессов, в специфике экономической науки. Большинство объектов, изучаемых экономической наукой, может быть охарактеризовано кибернетическим понятием сложная система. Наиболее распространено понимание системы как совокупности элементов, находящихся во взаимодействии и образующих некоторую целостность, единство.

Уже длительное время главным тормозом практического применения математического моделирования в экономике является наполнение разработанных моделей конкретной и качественной информацией. Точность и полнота первичной информации, реальные возможности ее сбора и обработки во многом определяют выбор типов прикладных моделей. С другой стороны, исследования по моделированию экономики выдвигают новые требования к системе информации. В зависимости от моделируемых объектов и назначения моделей используемая в них исходная информация имеет существенно различный характер и происхождение. Она может быть разделена на две категории: о прошлом развитии и современном состоянии объектов (экономические наблюдения и их обработка) и о будущем развитии объектов, включающую данные об ожидаемых изменениях их внутренних параметров и внешних условий (прогнозы). Вторая категория информации является результатом самостоятельных исследований, которые также могут выполняться посредством моделирования. Методы экономических наблюдений и использования результатов этих наблюдений разрабатываются экономической статистикой. Поэтому стоит отметить только специфические проблемы экономических наблюдений, связанные с моделированием экономических процессов. В экономике многие процессы являются массовыми; они характеризуются закономерностями, которые не обнаруживаются на основании лишь одного или нескольких наблюдений. Поэтому моделирование в экономике должно опираться на массовые наблюдения.

Для методологии планирования экономики важное значение имеет понятие неопределенности экономического развития. В исследованиях по экономическому прогнозированию и планированию различают два типа неопределенности:"истинную", обусловленную свойствами экономических процессов, и"информационную", связанную с неполнотой и неточностью имеющейся информации об этих процессах. Истинную неопределенность нельзя смешивать с объективным существованием различных вариантов экономического развития и возможностью сознательного выбора среди них эффективных вариантов. Речь идет о принципиальной невозможности точного выбора единственного (оптимального) варианта. В развитии экономики неопределенность вызывается двумя основными причинами. Во-первых, ход планируемых и управляемых процессов, а также внешние воздействия на эти процессы не могут быть точно предсказуемы из-за действия случайных факторов и ограниченности человеческого познания в каждый момент. Особенно характерно это для прогнозирования научно-технического прогресса, потребностей общества, экономического поведения.

Во-вторых, общегосударственное планирование и управление не только не всеобъемлющи, но и не всесильны, а наличие множества самостоятельных экономических субъектов с особыми интересами не позволяет точно предвидеть результаты их взаимодействий.

Неполнота и неточность информации об объективных процессах и экономическом поведении усиливают истинную неопределенность.

Сфера практического применения метода моделирования ограничивается возможностями и эффективностью формализации экономических проблем и ситуаций, а также состоянием информационного, математического, технического обеспечения используемых моделей.

В соответствии с современными научными представлениями системы разработки и принятия хозяйственных решений должны сочетать формальные и неформальные методы, взаимо усиливающие и взаимодополняющие друг друга. Формальные методы являются, прежде всего, средством научно обоснованной подготовки материала для действий человека в процессах управления. Это позволяет продуктивно использовать опыт и интуицию человека, его способности решать плохо формализуемые задачи.

Список использованной литературы:

  1. Ашманов, С.А. Введение в математическую экономику. М.: Наука, 1984.

  2. Лотов, А.В. Введение в экономико-математическое моделирование. М.:Наука, 1984.

  3. Райзберг, Б.А.. Курс экономики: Учебник / Под ред. Райзберга Б.А.– ИНФРА-М, 1997.

  4. Янч, Э. Прогнозирование научно-технического прогресса. / Пер. с англ.– М.: Прогресс, 1974.

  5. http://slovari.yandex.ru/

  6. http://math.immf.ru/lections/301.html

Просмотров работы: 6148