ПРИМЕНЕНИЕ ГРАВИТАЦИОННЫХ МОДЕЛЕЙ В ПРОГНОЗИРОВАНИИ ЭКСПОРТА. - Студенческий научный форум

V Международная студенческая научная конференция Студенческий научный форум - 2013

ПРИМЕНЕНИЕ ГРАВИТАЦИОННЫХ МОДЕЛЕЙ В ПРОГНОЗИРОВАНИИ ЭКСПОРТА.

Магомедова Е.С., Абдухаликова Д.Н.
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
При выработке определенной политики в области торговых отношений с другими странами или регионами возникает необходимость в предварительном анализе экономики. Поэтому очень важной остается задача комплексного исследования экономических отношений и моделирования торговли.

Гравитационная модель- модель, описывающая социальные и экономические взаимодействия между пространственными объектами (городами, регионами, странами). Данная модель получила название «гравитационной» из-за её очевидного сходства с Ньютоновским законом всемирного тяготения. В данный момент модель стала широко применяться для оценки торговых потоков и это благодаря её высокой эмпирической точности. Преимуществом данной модели является ее строгое теоретическое обоснование. Модель имеет множество различных модификаций, которые используются для анализа процесса урбанизации, для исследования экспортно-импортных взаимосвязей, размещения промышленности, миграции населения. Главным предположением, на которую основывается модель, является то, что взаимодействие является величиной, пропорциональной произведению показателей значимости (например, количества) объектов и обратно пропорциональной расстоянию между ними.

Гравитационная модель применяется для описания и прогноза различных социальных и экономических взаимодействий между районами города, населенными пунктами и базируется на предположении, что величина (сила) взаимодействия пропорциональна произведению показателей численности населения районов и обратно пропорциональна расстоянию между ними:

,

где - численность населения районов и ;

- расстояния между районами и ;

- показатель взаимодействия между районами и (например, количество поездок);

- коэффициент соответствия (нормирующий параметр).

Общий вид гравитационной модели:

Xij = α0(Yi )α1 (Yj ) α2(Ni ) α3(Nj ) α4 (Dij) α5(Pij) α6 +ε,(1)

где Xij –торговый поток из региона i в регион j;

Yi , Yj – показатели, характеризующие номинальные ВВП соответствующих регионов;

Dij – физическая удалённость экономических центров регионов i и j;

Ni, и Nj – численность населения в данном государстве;

Pij – торговые преференции, существующие между государствами (в случае отсутствия преференциальных соглашений Pij = 1; в противном случае Pij = 2);

α1, α2, α3, α4, α5, α6 – эластичности экспорта соответственно от ВВП страны-экспортера, от ВВП страны-импортера, от численности населения страны i, от численности населения страны j, от расстояния между странами, от торговых преференций.

Переписав уравнение (1) в логарифмической форме, получим параметры взаимной торговли (экспорт, импорт) в виде:

lnXij= lnα0 1 ln(Yi) + α2 ln(Yj) + α3ln(Ni)+α4 ln(Nj)+ α5 ln(Dij)+ α6 ln(Pij)+ ε

Переменные измеряются в следующих единицах:

Xij – в млн. руб.;

Yj, Yi – в млн. руб.;

Ni , Nj- в млн. чел.;

Dij – в тыс. км.

В рамках проекта были рассмотрены предпосылки и тенденции развития торгово-экономической интеграции республики Дагестан и Азербайджана. Проект позволяет прогнозировать внешнеторговый оборот и экспорт республики Дагестан в Азербайджан. Имея данные о ВВП Дагестана и Азербайджана за ряд лет (рис. 1) и о товарообороте между регионами, можно получить с помощью обычного метода наименьших квадратов соотношение, характеризующее поток торговли между ними.

Рис. 1 ВВП регионов

Динамика внешнеторгового оборота между Дагестаном и Азербайджаном за 2000 – 2012 гг. описывается следующим уравнением:

Xij = 77,74(Yi )0,72 (Yj )-0,47 (Ni ) 1,49 (Nj ) -1,65(Dij) -2,7

Данное уравнение позволяет составить прогноз величины экспорта. (Рис.2)

Рис.2 Фактические и прогнозные значения.

Модель протестирована с помощью критериев Стьюдента, Дарбина-Уотсона и на основе RS-критерия, результаты тестов показали, что модель является адекватной и может быть использована в качестве прогнозного уравнения.Как видно из полученных расчётов, модель адекватна, коэффициент детерминации R2= 0,90.

В соответствии с теорией построения гравитационных моделей и их описания внутренний валовой продукт экспортирующей страны отражает производственные возможности, в то время как ВВП импортирующего государства – ёмкость его рынка. В общем случае эти две переменные прямо пропорционально связаны с объёмами торговли. Можно отметить некоторые отклонения полученной модели от теоретических представлений. В полученной модели высока зависимость экспорта и внешнеторгового оборота от ВВП региона-экспортёра (коэффициенты, стоящие при переменной ВВП экспортирующего региона, положительны и оказывают сильное статическое влияние, что подтверждает теоретические представления). Однако наблюдается неэластичность экспорта и внешнеторгового оборота по отношению к ВВП страны-импортёра. Это объясняется различием в объёмах ВВП региона-экспортёра и страны-импортёра. Переменная населения оказывает отрицательный эффект на торговые потоки между странами, но коэффициент при переменной «население Дагестана» положителен, что можно в данном случае объяснить тем, что большое рост населения способствует развитию экономии масштаба и благоприятствует наращиванию экспорта, что и определяет знак «+» при переменной населения Дагестана.

Таким образом, исследование гравитационных моделей позволяет сделать вывод об их широком использовании в области моделирования торговых отношений, и не только на международном уровне, но и на региональном, городском.

Литература

  1. Власов М.П., Шимко П.Д. Моделирование экономических процессов. Ростов-на-Дону: Феникс, 2005;

  2. http://dagstat.gks.ru.

5

Просмотров работы: 6881