Развитие ядерной медицины неразрывно связано с разработкой новых эффективных РФП и совершенствованием радиодиагностической аппаратуры. Так, последние два десятилетия были ознаменованы использованием новейших технологий. Прежде всего, это ротационные многодетекторные гамма-камеры, сочетающие регистрацию позитрон-излучающих изотопов с трансмиссионной томографией и коррекцией поглощения. Современные эмиссионные томографы, совмещенные с рентгеновскими компьютерными томографами, решают проблему пространственной ориентации, особенно при мелкоочаговых и метастатических поражениях. Прогресс радионуклидной диагностики также обусловлен разработкой и применением РФП на основе ультракороткоживущих позитрон-излучающих радионуклидов, а также новых РФП для однофотонной компьютерной томографии на основе моноклональных антител и их фрагментов, рецептор-связывающих соединений. Наибольшее применение эти препараты получили в диагностике онкологических, сердечно-сосудистых и нервно-психических заболеваний.
Основные источники производства радионуклидов для ядерной медицины следующие: ядерные реакторы, ускорители заряженных частиц, как правило, циклотроны и радионуклидные генераторы (как вторичный источник). В мировом объеме производства радионуклидов громадная его часть получена на ускорителях заряженных частиц, которые в большинстве своем являются циклотронами различных типов и уровней. Этот факт обычно связывают с их доступностью, а также с дешевизной производства на них большинства радионуклидов. К середине 80-годов ежегодная наработка радионуклидов только для ядерной медицины на реакторах всего мира достигла в стоимостном выражении 500 млн. долларов (Many R. S., 2012). За последние два десятилетия обнаруживается существенный рост в использовании ускорителей заряженных частиц для указанных целей, который обьясняется более приемлемыми ядерно-физическими характеристиками получаемых с их помощью нейтронодефицитных радионуклидов.
Первые 20-25 лет производство радионуклидов было сконцентрировано вокруг крупных реакторных установок. наиболее часто при облучении в реакторах использовали потоки тепловых нейтронов с интенсивностью несколько единиц на 1013 н/см2*с и реже – чуть более 1015 н/см2*с, а также инициируемые этими нейтронами реакции радиационного захвата нейтронов (n,g). Выходы этой реакции, как правило, уменьшаются с увеличением энергии нейтронов. Вот почему облучение стартовых материалов (мишеней), а это чаще всего термически и радиационно-стойкие материалы, например, металлы, простые вещества, термостойкие окислы и соли, содержащие стартовый нуклид в природной или изотопно-обогащенной форме, осуществляют в каналах производственных или исследовательских реакторов с преобладанием тепловой компоненты нейтронов. Еще одним типом реакции, используемым для масштабного производства радионуклидов для медицины, является реакция деления (n,f). Основные радионуклиды, образующиеся в результате деления 235 U под действием нейтронов и применяемые в медицине: 137Cs, 131I,90Sr и 99Мо.
В тех случаях, когда пользователи находятся вдали от исследовательских ядерных и ускорителей заряженных частиц и местах, куда затруднена регулярная доставка РФП, тогда прибегают к использованию радионуклидных генераторов. Кроме того, значительные потери короткоживущих радионуклидов становится неизбежными вследствие их распада во время транспортировки. В этой связи давно стали привлекать внимание системы двух генетически связанных между собой радионуклидов, когда один из них – более короткоживущий (дочерний) постоянно образуется (генерируется) в результате распада другого (материнского), имеющего больший период полураспада, а сам при распаде превращается в стабильный нуклид. При этом, короткоживущий нуклид, являющийся изотопом другого по сравнению с материнским элементом, может быть быстро и многократно извлечен из небольшого устройства-генератора, например, посредством пропускания жидкости (элюата) определенного состава через это устройство, представляющее собой, в большинстве случаев, колонку, заполненную сорбентом и оборудованную фильтром, предотвращающем его вымывание. Полученный раствор (элюат), как правило, стерилен, не содержит материнского нуклида и имеет форму, пригодную для непосредственного применения в клинике. Такой генератор должен быть обеспечен защитным свинцовым кожухом и системой коммуникаций. Он прост и безопасен в эксплуатации в условиях больницы или клиники. Активность дочернего нуклида при элюировании из генератора определяется общими закономерностями, обусловленными кинетикой накопления и распада нуклидов.
Методы приготовления РФП на основе наборов реагентов просты и в большинстве случаев сводятся к добавлению элюата из генератора, содержащего, например 99mТс, во флакон со смесью реагентов, предназначенный для проведения определенного диагностического теста. После чего полученный раствор вводят пациенту и проводят сцинтиграфию скелета. Разработка новых наборов реагентов к генераторам короткоживущих нуклидов является одной из развивающихся областей радиофармацевтики.
Одной из главных составляющих успешного развития производства РФП является материальная составляющая. Финансирование и инвестиции, в соответствии с распоряжением Правительства РФ № 2092-р от 29.12.2009 г. в 2010 г. на реализацию проектов, одобренных Комиссией при Президенте РФ по модернизации и технологическому развитию экономики России, будут составлять бюджетные ассигнования в размере 5327 млн. руб., из них по разделу «Медицинская техника и фармацевтика» — 1 100 млн. руб. Данные средства будут распределены следующим образом: на организацию производства новых радиофармпрепаратов и медицинских изделий и формирование сети услуг по оказанию высокотехнологичной медицинской помощи ФМБА России получит 557 млн. руб.; на эти же цели Госкорпорация по атомной энергии «Росатом» получит 398 млн. руб.; Минпромторг России получит 145 млн. руб. на организацию опытно-промышленного производства субстанций и лекарственных средств на основе моноклональных антител, необходимых для выпуска дорогостоящих импортозамещающих препаратов.