Большой адронный коллайдер - Студенческий научный форум

IV Международная студенческая научная конференция Студенческий научный форум - 2012

Большой адронный коллайдер

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Большой адронный коллайдер- это грандиозное сооружение, созданное для исследования элементарных частиц. БАК- самый мощный в истории ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжелых ионов (ионов свинца) и изучения продуктов их соударений. Он создан в ЦЕРН (Европейском центре ядерных исследований) при участии физиков из 80 стран и расположен на границе Швейцарии и Франции. Первый запуск коллайдера состоялся в сентябре 2008 года. Коллайдер представляет собой тоннель в виде кольца, аналогичный городскому метро, напичканный уникальной аппаратурой. Кольцо его около 27 км в длину и 8,5 км в диаметре. В тоннеле коллайдера расположена труба с очень чистым вакуумом (добиться его - уже непростая задача). По всей длине коллайдера расставлены сверхпроводящие магниты: магнитное поле должно будет «заворачивать» ускоряемые протоны по кругу. Их в трубе огромное количество - приблизительно три тысячи сгустков, каждый из которых представляет собой «иголку» из трех миллиардов протонов толщиной в долю микрона и длиной в долю миллиметра. Все это будет гоняться по трубе со скоростью, равной 99,9% скорости света.  В четырех точках тоннеля (там, где установлены детекторы) встречные пучки протонов будут выводить «лоб в лоб». Сгусток энергии, который при этом возникнет, возмущает физический вакуум, в результате чего возникают и разлетаются взрывным образом во все стороны тысячи частиц. Каждый детектор будет настроен на свой диапазон, свои энергии, свои частицы, которые в нем и будут регистрироваться.Это крупнейший международный проект, ключевые участники которого - страны Евросоюза, а наблюдатели - США, Канада, Россия, Япония и Китай.

Главная цель коллайдера - поиск бозона Хиггса. Что это такое? Если кратко, то ученые пытаются найти частицу, ответственную за наличие массы. В макро-мире физических объектов масса интуитивно понятна: слон большой и тяжелый, а муравей маленький и легкий. Но почему так сильно различаются массы частиц микро-мира? Масса одних частиц на 11 порядков превосходит массу других, а у третьих массы нет вовсе! Официальная современная научная доктрина, так называемая Стандартная Модель, объясняет это следующим образом. Все пространство пронизано неким полем Хиггса. Частицы, двигаясь в этом поле, испытывают сопротивление, и чем больше это сопротивление, тем большую массу приобретает та или иная частица. Иными словами, масса - это что-то типа силы трения, которую испытывает частица о поле Хиггса. Это можно представить как движения шариков в очень вязкой жидкости: некоторые шарики слабо взаимодействуют с полем и «проскакивают» не приобретая массы, другие увязают и приобретают значительную массу.

ATLAS, CMS, ALICE, LHCb - большие детекторы, расположенные вокруг точек столкновения пучков. Детекторы TOTEM и LHCf - вспомогательные, находятся на удалении в несколько десятков метров от точек пересечения пучков, занимаемых детекторами CMS и ATLAS соответственно, и будут использоваться попутно с основными.  Во время работы коллайдера столкновения проводятся одновременно во всех четырёх точках пересечения пучков, независимо от типа ускоряемых частиц (протоны или ядра). При этом все детекторы одновременно набирают статистику. Траектория протонов p (и тяжёлых ионов свинца Pb) начинается в линейных ускорителях (в точках p и Pb, соответственно). Затем частицы попадают в бустерпротонного синхротрона (PS), через него - в протонный суперсинхротрон (SPS) и, наконец, непосредственно в туннель БАК.

Что может произойти при столкновении двух протонов?

Во-первых, существует вероятность образования так называемых первичных, или микроскопических, черных дыр.Если столкнуть два протона, то они сожмутся до гигантских плотностей, при этом теоретически возможно возникновение черной дыры, которая начнет сперва потихоньку, а потом все быстрей и быстрей засасывать в себя материю. Чем больше она поглощает, тем больше ей хочется. Поглощение будет происходить взрывообразным образом, только вовнутрь: то есть мы взорвемся внутрь черной дыры. Однако для образования черной дыры необходимо, чтобы энергия при столкновении не разлетелась, а, напротив, сфокусировалась, а вероятность такой фокусировки для образования черной дыры - это ноль, запятая и сотни нулей.

Во-вторых, может образоваться кварк-глюонная плазма. Протон состоит из кварков, которые удерживаются глюонами (частички, аналогичные квантам света, только в сильных взаимодействиях, так называемый ядерный свет). Когда протоны столкнутся при больших энергиях, из всего этого образуется каша, которая на физическом языке называется кварк-глюонной плазмой.

До сих пор получить кварк-глюонную плазму в экспериментальных установках не удавалось, поэтому физики-теоретики не знают, как она себя поведет. Одна из теорий катастроф на этом коллайдере как раз и заключается в том, что при столкновении протонов обязательно на очень-очень маленький момент кварк-глюонная плазма возникнет. И если станет устойчивой, то точно так же, как черная дыра, может перевести всю окружающую материю в свою собственную форму.

Просмотров работы: 6