РАКЕТНЫЕ ДВИГАТЕЛИ НАСТОЯЩЕГО И БУДУЩЕГО - Студенческий научный форум

IV Международная студенческая научная конференция Студенческий научный форум - 2012

РАКЕТНЫЕ ДВИГАТЕЛИ НАСТОЯЩЕГО И БУДУЩЕГО

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Согласно проведенным исследованиям, основное применение ракетных двигателей - ракеты и космические аппараты. Их отличительная особенность - им не нужен воздух, это единственный тип двигателя, который может работать в безвоздушном пространстве. По назначению они подразделяются на основные и вспомогательные. Основные ракетные двигатели обеспечивают разгон ракет-носителей и космических аппаратов до требуемых скоростей полёта, перевод космического аппарата с орбиты искусственного спутника Земли на траекторию полёта к другим планетам, посадку на планету и т. д. Вспомогательные двигатели используются для управления полётом ракеты и космического аппарата, ориентации и стабилизации космического аппарата, разделения частей ракеты-носителя и других операций. Наиболее часто в качестве вспомогательных используют газовые двигатели, тяга которых создаётся за счёт истечения сжатого газа, хранящегося в баллонах высокого давления. По мере расходования газа тяга газового ракетного двигателя уменьшается, время его работы ограничено.

Ракетный двигатель - реактивный двигатель, использующий для работы только вещества и источники энергии, имеющиеся на перемещающемся аппарате (летательном, наземном, подводном). В зависимости от вида энергии, преобразующейся в РД в кинетическую энергию реактивной струи, различают химические ракетные двигатели (ХРД), ядерные ракетные двигатели (ЯРД), электрические ракетные двигатели (ЭРД). В процессах преобразования первичной энергии в кинетическую энергию реактивной струи участвует рабочее тело РД. В ХРД источники энергии и рабочего тела совмещены в химическом ракетном топливе. Для ЯРД и ЭРД характерны раздельные источники энергии и рабочего тела. ХРД по агрегатному состоянию топлива разделяются на жидкостные ракетные двигатели (ЖРД), ракетные двигатели твёрдого топлива (РДТТ), РД на гибридном, желеобразном (тиксотропном), псевдоожиженном и газообразном топливе. Широкое применение получили ЖРД и РДТТ. Тяга РДТТ достигает 12 МН, удельный импульс тяги - 2,5-3 км/с. Максимальная тяга ЖРД приближается к 10 МН, удельный импульс достигает 4,5-5 км/с. В ЯРД используется теплота, выделяющаяся в реакторе в результате цепной реакции деления, или энергия радиоактивного распада. Удельный импульс тяги ЯРД может значительно превышать удельный импульс тяги, развиваемый ХРД. ЯРД находятся в стадии изучения и создания экспериментальных образцов. 
Для ЭРД характерен весьма высокий удельный импульс тяги, в десятки и сотни раз превышающий удельный импульс тяги ХРД. Созданы экспериментальные образцы ЭРД: электротермические, электро-магнитные, электростатический (ионный).

Твердотопливные двигатели (ракетные двигатели твердого топлива, РДТТ) широко используются в современной космонавтике, удачно дополняя жидкостные ракетные двигатели (ЖРД), работающие на жидком топливе. Области конкретного применения этих двух типов двигателей определяются их сравнительными конструктивными, энергетическими, эксплуатационными, финансовыми и другими характеристиками. Большее содержание потенциальной химической энергии, запасенной в единице массы жидкого ракетного топлива, легкость регулирования рабочего режима (величины тяги) и осуществимость многократного включения и выключения ЖРД в полете предопределили главенствующую роль этих двигателей в космонавтике. ЖРД широко применяются в качестве маршевых, т. е. основных, двигателей, обеспечивающих разгон ракет-носителей (РН) и космических аппаратов (КА), торможение КА и перевод их на другие орбиты и т. д. В качестве вспомогательных двигателей ЖРД используются, например, почти во всех реактивных системах управления полетом КА.

Что касается РДТТ, то прежде всего следует отметить, что благодаря быстродействию и простоте устройства (а следовательно, надежности) этот двигатель является наиболее подходящим или даже незаменимым средством для создания тяги при проведении таких «вспомогательных» операций, как аварийное спасение космонавтов на начальном участке вывода космических кораблей на околоземные орбиты, разделение ступеней РН, раскрутка ракетных ступеней и КА с целью их стабилизации в полете, создание начальных перегрузок для нормального запуска основных ЖРД в невесомости и т. д. Во многих случаях оказывается целесообразным использование маршевых космических РДТТ. В этом качестве твердотопливные двигатели широко применяются на верхних ступенях РН и в так называемых разгонных блоках, включаемых в космосе. Установка на ракеты-носители навесных РДТТ, включаемых при старте, является эффективным способом повышения мощности РН. В арсенале космонавтики имеются и полностью твердотопливные РН.

Несмотря на большое место, которое занимают твердотопливные двигатели в современной космонавтике, космические РДТТ не нашли достаточного отражения в литературе. Настоящая брошюра восполняет этот пробел. В ней рассказывается об устройстве и особенностях космических РДТТ, истории их создания и применения. Наряду с общим уровнем развития РДТТ рассматриваются конкретные конструкции двигателей, обсуждаются перспективы дальнейшего развития и использования РДТТ в космонавтике.

Термохимические ракетные двигатели. В жидкостных термохимических ракетных двигателях в качестве горючего используется спирт, керосин, бензин, анилин, гидразин, димстилгидразин, жидкий водород, а в качестве окислителя - жидкий кислород, пероксид водорода, азотная кислота, жидкий фтор. Горючее и окислитель для ЖРД хранятся раздельно, в специальных баках и под давлением или с помощью насосов подаются в камеру сгорания, где при их соединении развивается температура 3000 - 4500 °С. 
Продукты сгорания, расширяясь, приобретают скорость 2500-4500 м/с, создавая реактивную тягу. Чем больше масса и скорость истечения газов, тем больше сила тяги двигателя. Насосы подают топливо к головке двигателя, в которой смонтировано большое число форсунок. Через одни из них в камеру впрыскивается окислитель, через другие - горючее. В любой машине при сгорании топлива образуются большие тепловые потоки, нагревающие стенки двигателя. Если не охлаждать стенки камеры, то она быстро прогорит, из какого материала ни была бы сделана. ЖРД, как правило, охлаждают одним из компонентов топлива. Для этого камеру делают двухстеночной. В зазоре между стенками протекает компонент топлива. 
Большой удельный импульс тяги создает двигатель, работающий на жидком кислороде и жидком водороде. В реактивной струе этого двигателя газы мчатся со скоростью немногим больше 4 км/с. Температура струи около 3000°С, и состоит она из перегретого водяного пара, который образуется при сгорании водорода в кислороде. Но у кислорода наряду с рядом достоинств есть и один недостаток - при нормальной температуре он представляет собой газ. Понятно, что применять в ракете газообразный кислород нельзя, ведь в этом случае пришлось бы хранить его под большим давлением в массивных баллонах. Поэтому уже Циолковский, первый предложивший кислород в качестве компонента ракетного топлива, говорил о жидком кислороде. Чтобы превратить кислород в жидкость, его нужно охладить до температуры  183°С. Однако сжиженный кислород легко и быстро испаряется, даже если его хранить в специальных теплоизолированных сосудах. Поэтому нельзя, например, долго держать снаряженной ракету, двигатель которой работает на жидком кислороде. Приходится заправлять кислородный бак такой ракеты непосредственно перед пуском.  Азотная кислота не обладает таким недостатком и поэтому является «сохраняющимся»  окислителем. Этим объясняется ее прочное положение в ракетной технике, несмотря на существенно меньший удельный импульс тяги, которую она обеспечивает. Использование фтора - наиболее сильного из всех известных химии окислителей - позволит существенно увеличить эффективность ЖРД. Правда, жидкий фтор неудобен в эксплуатации из-за ядовитости и низкой температуры кипения (-188 °С). Но это не останавливает ракетчиков: экспериментальные двигатели на фторе уже существуют. Ф. А. Цандер предложил использовать в качестве горючего легкие металлы - литий, бериллий и др., в особенности как добавку к обычному топливу, например водородно-кислородному. Подобные «тройные композиции» способны обеспечить наибольшую возможную для химических топлив скорость истечения до 5 км/с. Но это уже, вероятно, предел ресурсов химии. Большего она практически сделать пока не может. 

Ядерные ракетные двигатели. Один из основных недостатков ракетных двигателей, работающих на жидком топливе, связан с ограниченной скоростью истечения газов. В ЯРД представляется возможным использовать колоссальную энергию, выделяющуюся при разложении ядерного горючего для нагревания рабочего тела. Принцип действия ЯРД почти не отличается от принципа действия термохимических двигателей. Разница заключается в том, что рабочее тело нагревается не за счет собственной химической энергии, а за счет «посторонней» энергии, выделяющейся при внутриядерной реакции. Рабочее тело пропускается через ядерный реактор, в котором происходит реакция деления атомных ядер (например, урана), и при этом нагревается. У ЯРД отпадает необходимость в окислителе и поэтому может быть использована только одна жидкость. В качестве рабочего тела целесообразно применять вещества, позволяющие двигателю развивать большой удельный импульс тяги. Этому условию наиболее полно удовлетворяет водород, затем следует аммиак, гидразин и вода. Процессы, при которых выделяется ядерная энергия, подразделяют на радиоактивные превращения, реакции деления тяжелых ядер, реакции синтеза легких ядер. Радиоактивные превращения реализуются в так называемых изотопных источниках энергии. Удельная массовая энергия (энергия, которую может выделить вещество массой 1 кг) искусственных радиоактивных изотопов значительно выше, чем химических топлив. Так, для 210Р0 она равна 5 х 108 кДж/кг, в то время как для наиболее энергопроизводительного химического топлива (бериллий с кислородом) это значение не превышает 3 x 104 кДж/кг. К сожалению, подобные двигатели применять на космических ракетах-носителях пока не рационально. Причина этого - высокая стоимость изотопного вещества и трудности эксплуатации. Ведь изотоп выделяет энергию постоянно, даже при его транспортировке в специальном контейнере, при стоянке ракеты на старте. В ядерных реакторах используется более энергопроизводительное топливо. Так, удельная массовая энергия 235U (делящегося изотопа урана) равна 5 х 109 кДж/кг, т. е. примерно на порядок выше, чем у изотопа 210Р0. Эти двигатели можно «включать» и «выключать», ядерное горючее (233U, 235U, 238U, 239Pu) значительно дешевле изотопного. У таких двигателей могут применяться эффективные рабочие вещества - спирт, аммиак, жидкий водород. Удельный импульс тяги двигателя с водородом около 9000 Н*с/кг. Ядерное горючее по запасу энергии превосходит любой другой вид топлива. Так почему же установки на этом горючем имеют сравнительно небольшую удельную тягу и большую массу? Дело в том, что удельная тяга твердофазного ЯРД  ограничена температурой делящегося вещества, а энергетическая установка при работе испускает сильное ионизирующее излучение, оказывающее  вредное действие на живые организмы и материалы. 

Импульсный ядерный ракетный двигатель. Это очень интересный и перспективный двигатель. В нем используется энергия большого числа небольших ядерных зарядов (в том числе и термоядерных), находящихся на борту ракеты. Эти ядерные заряды последовательно выбрасываются из ракеты и на некотором расстоянии за ней взрываются. При каждом взрыве часть расширяющихся газообразных продуктов в виде плазмы с высокой плотностью и скоростью ударяет об основание ракеты - толкающую платформу. Под действием удара платформа движется вперед с большим ускорением. Ускорение гасится демпфирующим устройством таким образом, чтобы возникающая при этом перегрузка не превышала предела выносливости человека. После цикла сжатия демпфирующее устройство возвращает толкающую платформу в начальное положение, после чего она готова принять новый очередной удар. Суммарное приращение скорости полета ракеты зависит от числа ядерных взрывов.

Термоядерные ракетные двигатели. Ядерные ракетные двигатели, по-видимому, не пригодны для установки на ракеты, стартующие с Земли. Для таких ракет может оказаться более предпочтительным термоядерный двигатель (ТЯРД). В качестве горючего для ТЯРД могут использоваться изотопы водорода. Энергопроизводительность водорода в этой реакции составляет 6,8 х 1011 кДж/кг, т. е. примерно на два порядка выше энергопроизводительности ядерных реакций деления. Ученые во многих странах мира работают над созданием термоядерных установок на их основе.

Просмотров работы: 816