ОСОБЕННОСТИ РАЗВИТИЯ ГРАФИЧЕСКИХ ПРОЦЕССОРОВ - Студенческий научный форум

XI Международная студенческая научная конференция Студенческий научный форум - 2019

ОСОБЕННОСТИ РАЗВИТИЯ ГРАФИЧЕСКИХ ПРОЦЕССОРОВ

Корелин А.М. 1
1Курганский институт железнодорожного транспорта филиал Уральского государственно университета путей сообщения г. Курган
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Графический процессор (англ. graphics processing unit, GPU) - отдельное устройство персонального компьютера или игровой приставки, выполняющее графический рендеринг

Графические процессоры (GPU) по сложности абсолютно не уступают центральным процессорам, но из-за своей узкой специализации, в состоянии более эффективно справляться с задачей обработки графики, построением изображения, с последующим выводом его на монитор.

Если говорить о параметрах, то они у графических процессоров весьма схожи с центральными процессорами. Это уже известные всем параметры, такие как микроархитектура процессора, тактовая частота работы ядра, техпроцесс производства. Но у них имеются и довольно специфические характеристики. Например, немаловажная характеристика графического процессора – это количество пиксельных конвейеров (Pixel Pipelines). Эта характеристика определяет количество обрабатываемых пикселей за один такт роботы GPU.

Пиксельный конвейер занимается тем, что просчитывает каждый последующий пиксель очередного изображения, с учётом его особенностей. Для ускорения процесса просчёта используется несколько параллельно работающих конвейеров, которые просчитывают разные пиксели одного и того же изображения.

Также, количество пиксельных конвейеров влияет на немаловажный параметр – скорость заполнение видеокарты. Скорость заполнения видеокарты можно рассчитать умножив частоту ядра на количество конвейеров.

Помимо пиксельных конвейеров, различают ещё так называемых текстурные блоки в каждом конвейере. Чем больше текстурных блоков, тем больше текстур может быть наложено за один проход конвейера, что также влияет на общую производительность всей видеосистемы.

Графический процессор от центрального отличает так же разница в архитектуре. Современные CPU содержат несколько ядер, тогда как графический процессор изначально создавался как многопоточная структура с множеством ядер. Разница в архитектуре обусловливает и разницу в принципах работы. Если архитектура CPU предполагает последовательную обработку информации, то GPU исторически предназначался для обработки компьютерной графики, поэтому рассчитан на массивно параллельные вычисления. Каждая из этих двух архитектур имеет свои достоинства. CPU лучше работает с последовательными задачами. При большом объёме обрабатываемой информации очевидное преимущество имеет GPU. Условие только одно - в задаче должен наблюдаться параллелизм.

eGPU - Это понятие расшифровывается, как External Graphics Processing Untit. По-другому – внешняя видеокарта. Обычно, это может быть не конкретно графический адаптер, а внешний интерфейс, который совместим со множеством видеокарт

Внешние графические процессоры иногда используются совместно с портативными компьютерами. Ноутбуки могут иметь большой объём оперативной памяти (RAM) и достаточно мощный центральный процессор (CPU), но часто им не хватает мощного графического процессора, вместо которого используется менее мощный, но более энергоэффективный встроенный графический чип. Встроенные графические чипы обычно недостаточно мощны для воспроизведения новейших игр или для других графически интенсивных задач, таких как редактирование видео.

Поэтому желательно иметь возможность подключать графический процессор к некоторой внешней шине ноутбука. PCI Express - единственная шина, обычно используемая для этой цели. Порт может представлять собой, к примеру, порт ExpressCard или mPCIe (PCIe×1, до 5 или 2,5 Гбит / с соответственно) или порт Thunderbolt 1, 2 или 3 (PCIe×4, до 10, 20 или 40 Гбит / с соответственно). Эти порты доступны только для некоторых ноутбуков.

Разработка eGPU не получила широкой поддержки от производителей, но пользовалась популярностью у пользователей ноутбуков.

Особенности развития графических процессоров

История современных 3D-акселераторов, предназначенных для домашнего, а не профессионального использования, всерьез началась с компании 3Dfx. Видеокарты на основе процессора Voodoo Graphics (он же Voodoo 1) производства 3Dfx появились в продаже в 1997 году и надолго сделали название производящей их компании синонимом слова 3D-акселератор. Платы на этом процессоре были видеоакселераторами в чистом виде, то есть для работы требовали уже установленной в системе видеокарты. Типичное рабочее разрешение для Voodoo I составляло 512х384 пикселов, максимальное – 640х480 при 16-битной глубине цвета, поддерживалось до 4 МБ видеопамяти.

Поддержало репутацию 3Dfx и следующее поколение — Voodoo 2. Отличия были кардинальными: вдвое большее количество текстурных блоков, что позволяло использовать мультитекстурирование (наложение более одной текстуры за такт). Тактовые частоты чипов (на плате их было два) и памяти повысились. Размер видеопамяти увеличился до 8-12 Мбайт, что позволяло использовать большие разрешения. Впервые в истории появилась видеокарта, реализующая трилинейную фильтрацию.

Конкуренцию 3Dfx составляла с самого начала присутствовавшая на этом рынке компания ATI, хотя ее первый процессор — Rage 3D — проигрывал Voodoo I. Но в 1999 году в продаже появились карты на базе чипа Rage 128 и Rage 128 PRO (они же Rage Fury и Rage Fury PRO). PRO представлял собой разогнанный вариант обычного Rage 128 (частоты 140/160 и 103/103 МГц соответственно). В них впервые появилась аппаратная поддержка MPEG-2.

Еще один игрок на этом рынке — компания nVidia, начинавшая с весьма приличного процессора Riva128 и Riva128ZX, в 1999 году выпустила серьезный чипсет Riva TNT, в котором появилась поддержка шины AGP, 32-битного цвета, разрешения до 1920х1440 пикселов. А на процессорах TNT2 выпускался знаменитый видеоакселератор Creative 3DBlaster TNT2 Ultra.

Заметными в истории графических процессоров были G400 производства Matrox, которые, хоть и несколько проигрывали в скорости 3D-графики, но сочетание с великолепным качеством обработки двухмерного изображения сделало карты на этом чипе очень популярными среди тех, кому нужны от компьютера не только игры. Оценена была и «двуголовость» некоторых карт на этом процессоре — он мог поддерживать 2 монитора. Видеокарты на следующей версии этого процессора, G400MAX, уже позиционировались как профессиональные, и потому стоили (и стоят до сих пор) очень недешево, а покупали их в основном профессионалы-полиграфисты и верстальщики, не признающие мониторов дешевле 1000 долларов и разрешений ниже 1600х1200.

Термин GPU был впервые использован компанией nVidia в августе 1999 в отношении главного чипа видеокарты нового поколения GeForce 256. От предшествующих графических чипов его отличала поддержка технологии Transform&Lighting. Эта технология заключалась в преобразовании координат виртуальных трехмерных объектов в плоские координаты, отображаемые на мониторе, и вычислении освещенности этих объектов. Это очень ресурсоемкие и сложные вычисления, особенно при большом количестве объектов. Ранее они выполнялись на центральном процессоре, отнимая значительную часть процессорного времени, либо на отдельных процессорах освещения и трансформации. Поэтому, благодаря появлению графических процессоров, с одной стороны, с CPU снималась часть нагрузки, что позволяло использовать его для решения других задач. С другой стороны, появилась возможность увеличения количества объектов и степени их прорисовки, что позволило добиться нового уровня реалистичности в 3D-приложениях, особенно в компьютерных играх.
Плата GeForce 256 была дорогой и непроизводительной на приложениях, которые не использовали возможностей аппаратного T&L, и по-прежнему пользовались услугами ЦП для ручных вычислений. Поэтому другие производители видеокарт, например, ATI, 3dfx Interactive, Matrox, не поддержали новой технологии и пророчили ей скорое забвение. Ситуация изменилась с выходом игр, поддерживающих аппаратно реализованную технологию T&LQuake III Arena, Unreal Tournament и др. Ввиду неоспоримых преимуществ аппаратного T&L перед программным вскоре он стал де-факто стандартом при программировании трехмерных игр. Компания ATI выпустила платы Radeon с его поддержкой, а два других конкурента вынуждены были уйти с рынка игровых видеоадаптеров.
Новым этапом в развитии графических процессоров стало появление пиксельных и вершинных шейдеров. Шейдеры представляют собой программы, написанные на языке, похожем на язык ассемблера, и позволяющие непосредственно управлять GPU, которые ранее не были программируемыми. Вершинные шейдеры позволяют определять параметры пикселя (освещенность, прозрачность, отражающую способность, координаты, текстуру и т.д.), исходя из параметров вершин треугольника, содержащего его. Пиксельные шейдеры позволяют работать с каждым пикселем индивидуально, уже после проведения геометрических преобразований. Поддержка программируемых шейдеров на аппаратном уровне впервые была реализована в 2000 году, в GPU nVidia GeForce 2 и ATI Radeon R100 (позднее переименован в Radeon 7200). Однако программная часть поддержки была плохо реализована. В результате, после согласования спецификаций, программируемые шейдеры стали поддерживаться DirectX 8.0, и первыми видеокартами, в которых можно было в полной мере пользоваться их преимуществами, стали видеокарты с чипами GeForce 3 и Radeon 8500.

Дальнейшее развитие графических процессоров обоих производителей происходило эволюционным путем: увеличивались тактовые частоты, добавлялась поддержка новых шейдерных моделей, улучшались технологии фильтрования и сглаживания. Все это позволяло добиваться новых уровней реалистичности при прорисовке объемных сцен.

На 2006 основными производителями графических процессоров для домашних ПК являются ATI Technologies и nVidia. Процессоры 2006 изготавливаются, как правило, по 130 или 90 нм технологии и работают на частоте 400-600 МГц.

Список источников

1. Таненбаум Э. Архитектура компьютера / Э. Таненбаум, Т. Остин. – СПб: Питер, 2013. – 816 с.

Просмотров работы: 83