Физико-химические свойства продуктов питания - Студенческий научный форум

XI Международная студенческая научная конференция Студенческий научный форум - 2019

Физико-химические свойства продуктов питания

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Питание является одним из самых значимых вопросов для любого человека. Знание физических свойств пищевых продуктов в значительной мере определяют их качество, способность к длительному хранению и транспортированию. От правильного хранения продуктов зависит здоровье и продолжительность жизни человека, которые эти продукты потребляет.

Физические процессы изменяют состояние и свойства продуктов, влияют на активность биохимических и химических процессов. Основные физические изменения (увлажнение и высыхание) приводят к изменениям массы продукта. При погрузочно-разгрузочных работах и транспортировании происходят механические воздействия (лом макаронных изделий, бой яиц, ушибы, повреждения плодов, овощей, деформация хлебобулочных изделий), которые ухудшают качество продуктов. Для предупреждения механических воздействий необходимо бережное обращение с товаром при разгрузке и перевозках.

1 Физические свойства пищевых продуктов

Под функциональными свойствами понимают физико-химические и другие характеристики, определяющие поведение продукта при хранении и переработке, а также обеспечивающие желаемую структуру, технологические и потребительские свойства готовых изделий. В отдельных случаях для определения функциональных свойств продукта используют термин «технологические свойства».

К физическим свойствам пищевых продуктов относят структурно-механические свойства, сыпучесть, способность к самосортированию, скважистость, сорбционные, теплофизические, оптические и электрофизические свойства.

Структурно-механические свойства

Структурно-механические свойства — особенности продукта, проявляющиеся при ударных, сжимающих, растягивающих и других воздействиях. Эти свойства характеризуют способность продуктов сопротивляться приложенным внешним силам или изменяться под их воздействием. К ним относятся прочность, твердость, упругость, эластичность, пластичность, вязкость.

Прочность, т. е. способность твердого тела сопротивляться разрушению при приложении к нему внешней силы при растяжении или сжатии — одно из важнейших структурно-механических свойств. Прочность материала зависит от его структуры и пористости. Материалы, имеющие линейное расположение частиц и меньшую пористость, более прочные. Чем прочнее единичный экземпляр продукта, тем меньше он разрушается или деформируется. Прочность имеет важное значение для качественной характеристики таких продовольственных товаров, как макароны, сахар-рафинад, печенье, плоды, овощи и др. Если пищевые продукты недостаточно прочные, увеличивается количество лома, крошки.

Твердость — местная краевая прочность тела, которая характеризуется сопротивлением проникновению в него другого тела. Твердость продуктов зависит от их природы, формы, структуры, размеров и расположения атомов, а также сил межмолекулярного сцепления. На твердость кристаллических тел влияет кристаллизационная вода, которая ослабляет внутренние связи и уменьшает твердость. Твердость определяют при оценке степени зрелости свежих плодов и овощей, так как при созревании их ткани размягчаются. Уменьшение твердости косвенно влияет на сохраняемость плодов и овощей, особенно их устойчивость к микробиологическим повреждениям.

Деформация — способность объекта изменять размеры, форму и структуру под влиянием внешних воздействий, вызывающих смещение отдельных частиц по отношению друг к Другу. Деформация зависит от величины и вида нагрузки, структуры и физико-химических свойств объекта. Деформации могут быть обратимыми и необратимыми. При обратимой деформации первоначальные размеры, форма и структура тела после снятия нагрузки восстанавливаются полностью, при необратимой — не восстанавливаются. Способность к обратимым деформациям характеризуется упругостью и эластичностью, разница между которыми заключается во времени, в течение которого восстанавливаются исходные параметры. Необратимые деформации обусловлены плотностью.

Упругость — способность объекта к мгновенно обратимым деформациям. Этим свойством обладают хлебобулочные изделия, для которых упругие свойства мякиша являются одним из наиболее важных показателей, характеризующих степень свежести.

Сыпучесть

Сыпучесть — способность перемещаться по наклонным плоскостям. Все порошкообразные продукты (мука, крупы, сахар-песок и др.), а также состоящие из единичных экземпляров более или менее округлой формы (зерно, корнеплоды, овощи, многие плоды) обладают хорошей сыпучестью.

Хорошая сыпучесть многих продуктов позволяет легко перемещать их при помощи транспортеров, норий, шнеков, загружать в различные по форме емкости хранилищ. Эти продукты также легко перемещаются самотеком по наклонной плоскости. Сыпучесть характеризуют двумя показателями: углом трения и углом естественного откоса.

Под углом трения понимают наименьший угол, при котором масса продукта начинает скользить по какой-либо поверхности. Под углом естественного откоса, или углом ската, понимают угол между диаметром основания и образующей конуса, получающегося при свободном падении части массы продукта на горизонтальную поверхность. На сыпучесть продукта влияет много факторов, в первую очередь форма, размер, характер и состояние поверхности единичных экземпляров продукта, а также его влажность и наличие примесей. Влияет также род поверхности, по которой продукт перемещают.

Примеси, встречающиеся в массе продукта, как правило, понижают его сыпучесть. Например, при наличии значительного количества семян сорняков с цепкой, шероховатой поверхностью сыпучесть зерна может быть полностью потеряна. Такое зерно нельзя без предварительной очистки засыпать в силос элеватора, так как могут быть закупорены выпускные отверстия. С увеличением влажности продукта его сыпучесть значительно понижается.

Самосортирование

Любое перемещение сыпучих продуктов сопровождается самосортированием,

т. е. неравномерным распределением входящих в них компонентов по отдельным участкам насыпи. Самосортирование обусловлено неодинаковой сыпучестью компонентов массы, оно нарушает однородность массы продукта и создает условия, способствующие развитию нежелательных явлений. При свободном падении массы продукта (например, в процессе заполнения силоса элеватора) самосортированию способствует парусность, т. е. неодинаковое сопротивление, оказываемое воздухом каждой отдельной частичке. Вследствие самосортирования в насыпи продукта появляются участки, резко отличающиеся по своему составу. При хранении зерна и ряда других продуктов это крайне нежелательно, так как в тех участках, где скапливаются мелкие щуплые зерна или легкие примеси, начинаются активные физиологические процессы, что может привести к порче зерна.

Скважистость

Многие продукты не абсолютно плотно заполняют объемы. Остаются промежутки между твердыми частицами, которые заполнены воздухом. Наличие таких промежутков называется скважистостью. Образование скважин в массе продукта влияет на многие протекающие в нем физические и физиологические процессы. Скважистость позволяет продувать продукт воздухом или вводить в него пары различных веществ для обеззараживания.

От скважистости зависит объемная, или насыпная масса продуктов. Чем выше скважистость, тем меньше продукта поместится в емкость определенных размеров, поэтому скважистость продукта необходимо учитывать при проектировании хранилищ и транспортных средств.

Сорбционные свойства

Продукты обладают способностью поглощать (сорбировать) из окружающей среды пары различных веществ и газы. При определенных условиях может иметь место и обратный процесс — выделение (десорбция) этих веществ.

Значительная сорбционная емкость массы продукта объясняется двумя причинами: капиллярно-пористой коллоидной структурой единичных экземпляров и скважистостью массы продукта.

Один из видов сорбции — гигроскопичность, т. е. способность продуктов к поглощению водяных паров. Гигроскопические свойства имеют исключительное значение. Влажность продукта — один из важнейших факторов, обусловливающих стойкость его при хранении. Влагообмен между продуктом и воздухом может происходить в двух противоположных направлениях: десорбция — передача влаги от продукта воздуху, когда парциальное давление пара над поверхностью продукта выше, чем в воздухе; сорбция — принятие влаги из воздуха. Влагообмен между продуктом и воздухом прекратится, когда парциальное давление водяного пара в воздухе и над поверхностью продукта будет одинаковым, т. е. наступит динамическое равновесие. Влажность продукта, соответствующая этому состоянию, называется равновесной и повышается с увеличением влажности окружающей среды. Равновесная влажность при стационарных условиях окружающей среды (постоянной влажности и температуре) — величина постоянная. В зависимости от изменений внешней среды ее значение может изменяться от 7 до 36 %. Влажность продукта, равная 1%, является равновесной для воздуха с влажностью 15-20%, а 33-36%— для воздуха, полностью насыщенного водяными парами.

Величина равновесной влажности зависит от химического состава продукта. Так, у масличных культур при всех равных условиях величина равновесной влажности почти вдвое меньше, чем у зерновых. Это объясняется меньшим содержанием в масличных семенах гидрофильных коллоидов. При постоянной температуре зависимость между влажностью продуктов и влажностью воздуха выражается изотермой сорбции. Важным для практики является то, что влажность продуктов изменяется неравномерно. Наиболее значительно возрастает влажность продукта при относительной влажности воздуха в пределах 80-100 %. При влажности воздуха 75 % равновесная влажность злаковых 15-16 %, а в более насыщенном влагой воздухе она увеличивается вдвое и достигает 32-36 %.

Равновесная влажность зависит от температуры окружающего воздуха. С понижением температуры воздуха величина равновесной влажности возрастает (при понижении с 30 до О °С примерно на 1,5%).

Помимо этого имеет значение и так называемое явление сорбционного гистерезиса, выражающееся в несовпадении изотерм сорбции и десорбции.

Кривые равновесной влажности показывают, что различные пробы одного и того же продукта, находясь в состоянии равновесия с одной и той же средой, могут иметь различную влажность.

Оптические и электрофизические свойства

К оптическим свойствам относят прозрачность, цветность, рефракцию, оптическую активность. Эти показатели воспринимаются человеком посредством зрительных ощущений. Оптические свойства - важный показатель качества большинства продуктов питания.

Электрофизические свойства определяют поведение продуктов в электромагнитном поле. Основным показателем этих свойств является электропроводность. На этом показателе основано определение влажности и титруемой кислотности некоторых продуктов.

Теплофизические свойства пищевых продуктов

Любая масса продукта в целом обладает рядом теплофизических свойств, из которых наибольшее значение имеют теплоемкость и термовлагопроводность.

Температура продукта относится к важнейшим его характеристикам и зависит от температуры окружающей среды. При перемещении продуктов из одной среды в другую возникают перепады температуры, что может вызвать конденсацию и увлажнение. Вследствие этого могут увеличиться масса продуктов, произойти нежелательные качественные изменения (микробиологическая порча, коррозия металлов и т. п.).

Температура продуктов существенно влияет на их сохраняемость, поэтому устанавливаются ее оптимальные пределы для каждой товарной группы или отдельного продукта. Например, температура молока должна быть не выше 8 °С, но не ниже 0 ºС.

Теплоемкость 

Теплоемкость — количество теплоты, необходимое для повышения температуры объекта определенной массы в определенном интервале температуры. Удельная теплоемкость воды равна 1 Дж/К, углеводов — 0,34, жиров — 0,42, белков — 0,37 Дж/К, поэтому теплоемкость продуктов зависит от их химического состава. С увеличением влажности и температуры теплоемкость увеличивается.

Удельная теплоемкость рассчитывается для определения количества теплоты, которое нужно передать продукту для нагревания или отвести от него для охлаждения. Этот показатель применяется для расчета потребностей в холодильном оборудовании или кондиционерах для обогрева, а также учитываются при расчетах теплового оборудования для приготовления пищи, при определении соотношения основных продуктов и фритюрного жира и других расчетах.

Термовлагопроводность

К важным теплофизическим процессам, происходящим в пищевой среде, относится термовлагопроводность. Суть этого процесса заключается в том, что при постепенном прогреве продукта, сопровождающемся перемещением теплоты из зон более нагретых в зоны с более низкой температурой, вместе с потоком теплоты устремляется и поток влаги. Вследствие этого между нагретыми и ненагретыми участками создается зона повышенной влажности, что может иметь негативные последствия. Явлением термовлагопроводности, например, объясняется то, что мякиш выпеченных мучных изделий может иметь несколько большую влажность по сравнению с тестом.

Характеризуя теплофизические свойства подавляющего большинства пищевых продуктов в целом, следует отметить, что они обладают большой тепловой инерционностью, т. е. медленно реагируют на изменение температуры окружающей среды. Значительная тепловая инерционность продуктов имеет как положительное, так и отрицательное значение. С одной стороны, большая тепловая инерция при правильно организованном хранении продуктов обеспечивает в них низкую температуру длительный период, даже в теплое время года, и тем самым консервирует их. С другой стороны, при наличии благоприятных условий для жизнедеятельности микроорганизмов и вредителей выделенная ими теплота может накапливаться в массе продукта и приводить к повышению температуры и самосогреванию.

ВЫВОДЫ

К физико-химическим свойствам пищевых продуктов относят структурно-механические свойства, сыпучесть, способность к самосортированию, скважистость, сорбционные и теплофизические и оптические свойства. Любая масса продукта в целом обладает рядом теплофизических свойств, из которых наибольшее значение имеют теплоемкость, температуропроводность, теплопроводность и термовлагопроводность. Температура продукта относится к важнейшим его характеристикам и зависит от температуры окружающей среды. При перемещении продуктов из одной среды в другую возникают перепады температуры, что может вызвать конденсацию и увлажнение. Вследствие этого могут увеличиться масса продуктов, произойти нежелательные качественные изменения (микробиологическая порча, коррозия металлов и т. п.).

СПИСОК ЛИТЕРАТУРЫ

Нечаев А.П. Пищевая химия. – СПб.: ГИОРД, 2001. – 592 с.

Электронный учебно-методический комплекс дисциплины «Физическая и коллоидная химия: учебно-методический комплекс дисциплины» Учебное пособие. ФГУП НТЦ «ИНФОРМРЕГИСТР» Депозитарий электронных изданий. Москва 2010.

Термодинамические свойства комбинированных пищевых систем на основе овощных пюре, крупяных хлопьев и творога. Шамкова Н.Т., Яковлева Т.В., Зайко Г.М., Боровская Л.В.Известия высших учебных заведений. Пищевая технология. 2008. № 2-3 (303-304).

Зависимость теплоемкости от температуры в системах на основе полиэтиленгликоля и жирных кислот. Шабалина С.Г., Шпербер Ф.Р., Данилин В.Н., Боровская Л.В.депонированная рукопись № 340-В2002 20.02.2002

Исcледование студней на основе каррагинана и пектина методом дифференциальной сканирующей калориметрии. Барашкина Е.В., Тамова М.Ю., Боровская Л.В., Миронова О.П.//Известия высших учебных заведений. Пищевая технология. 2003. №4

Применение PDM-технологий в управлении качеством пищевой продукции. Боровская Л.В., Молова О.Э.//В сборнике: Устойчивое развитие, экологически безопасные технологии и оборудование для переработки пищевого сельскохозяйственного сырья; импортоопережение Сборник материалов международной научно-практической конференции. 2016. 

Исследование термодинамических свойств белково-полисахаридной системы методом дифференциальной сканирующей калориметрии.Бугаец Н.А., Тамова М.Ю., Боровская Л.В., Миронова О.П.Известия высших учебных заведений. Пищевая технология. 2003. № 5-6

Транспортировка и хранение скоропортящихся пищевых продуктов. Данилин В.Н., Петрашев В.А., Боровская Л.В.Известия высших учебных заведений. Пищевая технология. 1996. № 1-2 (230-231).

Просмотров работы: 2482